Given line equation of 2-order: −3x12−2x1x2−3x22=0 This equation looks like: a11x22+2a12x1x2+2a13x2+a22x12+2a23x1+a33=0 where a11=−3 a12=−1 a13=0 a22=−3 a23=0 a33=0 To calculate the determinant Δ=a11a12a12a22 or, substitute Δ=−3−1−1−3 Δ=8 Because Δ is not equal to 0, then find the center of the canonical coordinate system. To do it, solve the system of equations a11x20+a12x10+a13=0 a12x20+a22x10+a23=0 substitute coefficients −x10−3x20=0 −3x10−x20=0 then x20=0 x10=0 Thus, we have the equation in the coordinate system O'x'y' a33′+a11x2′2+2a12x1′x2′+a22x1′2=0 where a33′=a13x20+a23x10+a33 or a33′=0 a33′=0 then equation turns into −3x1′2−2x1′x2′−3x2′2=0 Rotate the resulting coordinate system by an angle φ x2′=−x~1sin(ϕ)+x~2cos(ϕ) x1′=x~1cos(ϕ)+x~2sin(ϕ) φ - determined from the formula cot(2ϕ)=2a12a11−a22 substitute coefficients cot(2ϕ)=0 then ϕ=4π sin(2ϕ)=1 cos(2ϕ)=0 cos(ϕ)=2cos(2ϕ)+21 sin(ϕ)=1−cos2(ϕ) cos(ϕ)=22 sin(ϕ)=22 substitute coefficients x2′=−22x~1+22x~2 x1′=22x~1+22x~2 then the equation turns from −3x1′2−2x1′x2′−3x2′2=0 to −3(−22x~1+22x~2)2−2(−22x~1+22x~2)(22x~1+22x~2)−3(22x~1+22x~2)2=0 simplify −2x~12−4x~22=0 2x~12+4x~22=0 Given equation is degenerate ellipse (22)2x~12+(21)2x~22=0 - reduced to canonical form The center of canonical coordinate system at point O
(0, 0)
Basis of the canonical coordinate system e1=(22,22) e2=(−22,22)
Invariants method
Given line equation of 2-order: −3x12−2x1x2−3x22=0 This equation looks like: a11x22+2a12x1x2+2a13x2+a22x12+2a23x1+a33=0 where a11=−3 a12=−1 a13=0 a22=−3 a23=0 a33=0 The invariants of the equation when converting coordinates are determinants: I1=a11+a22
I1=−6 I2=8 I3=0 I(λ)=λ2+6λ+8 K2=0 Because I3=0∧I2>0 then by line type: this equation is of type : degenerate ellipse Make the characteristic equation for the line: −I1λ+I2+λ2=0 or λ2+6λ+8=0 λ1=−2 λ2=−4 then the canonical form of the equation will be x~12λ2+x~22λ1+I2I3=0 or −4x~12−2x~22=0 (21)2x~12+(22)2x~22=0 - reduced to canonical form