Mister Exam

5*x+1 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

Detail solution
Given line equation of 2-order:
5x+1=05 x + 1 = 0
This equation looks like:
a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0
where
a11=0a_{11} = 0
a12=0a_{12} = 0
a13=52a_{13} = \frac{5}{2}
a22=0a_{22} = 0
a23=0a_{23} = 0
a33=1a_{33} = 1
To calculate the determinant
Δ=a11a12a12a22\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|
or, substitute
Δ=0000\Delta = \left|\begin{matrix}0 & 0\\0 & 0\end{matrix}\right|
Δ=0\Delta = 0
Because
Δ\Delta
is equal to 0, then
Given equation is straight line
- reduced to canonical form
The center of the canonical coordinate system in OXY
x0=x~cos(ϕ)y~sin(ϕ)x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}
y0=x~sin(ϕ)+y~cos(ϕ)y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}
x0=00x_{0} = 0 \cdot 0
y0=00y_{0} = 0 \cdot 0
x0=0x_{0} = 0
y0=0y_{0} = 0
The center of canonical coordinate system at point O
(0, 0)

Basis of the canonical coordinate system
e1=(1, 0)\vec e_1 = \left( 1, \ 0\right)
e2=(0, 1)\vec e_2 = \left( 0, \ 1\right)