Given line equation of 2-order:
$$f x - 12 \left(x - 1\right)^{2} + 2 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} f x + 2 a_{13} x + a_{22} f^{2} + 2 a_{23} f + a_{33} = 0$$
where
$$a_{11} = -12$$
$$a_{12} = \frac{1}{2}$$
$$a_{13} = 12$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{33} = -10$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}-12 & \frac{1}{2}\\\frac{1}{2} & 0\end{matrix}\right|$$
$$\Delta = - \frac{1}{4}$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} f_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} f_{0} + a_{23} = 0$$
substitute coefficients
$$\frac{f_{0}}{2} - 12 x_{0} + 12 = 0$$
$$\frac{x_{0}}{2} = 0$$
then
$$x_{0} = 0$$
$$f_{0} = -24$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} f' x' + a_{22} f'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} f_{0} + a_{33}$$
or
$$a'_{33} = 12 x_{0} - 10$$
$$a'_{33} = -10$$
then equation turns into
$$f' x' - 12 x'^{2} - 10 = 0$$
Rotate the resulting coordinate system by an angle φ
$$x' = - \tilde f \sin{\left(\phi \right)} + \tilde x \cos{\left(\phi \right)}$$
$$f' = \tilde f \cos{\left(\phi \right)} + \tilde x \sin{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = -12$$
then
$$\phi = - \frac{\operatorname{acot}{\left(12 \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = - \frac{\sqrt{145}}{145}$$
$$\cos{\left(2 \phi \right)} = \frac{12 \sqrt{145}}{145}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = - \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}}$$
substitute coefficients
$$x' = \tilde f \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}} + \tilde x \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}}$$
$$f' = \tilde f \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}} - \tilde x \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}}$$
then the equation turns from
$$f' x' - 12 x'^{2} - 10 = 0$$
to
$$- 12 \left(\tilde f \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}} + \tilde x \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}}\right)^{2} + \left(\tilde f \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}} + \tilde x \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}}\right) \left(\tilde f \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}} - \tilde x \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}}\right) - 10 = 0$$
simplify
$$- 6 \tilde f^{2} + \tilde f^{2} \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}} \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}} + \frac{72 \sqrt{145} \tilde f^{2}}{145} - 24 \tilde f \tilde x \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}} \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}} + \frac{12 \sqrt{145} \tilde f \tilde x}{145} - 6 \tilde x^{2} - \frac{72 \sqrt{145} \tilde x^{2}}{145} - \tilde x^{2} \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}} \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}} - 10 = 0$$
$$- \frac{\sqrt{145} \tilde f^{2}}{2} + 6 \tilde f^{2} + 6 \tilde x^{2} + \frac{\sqrt{145} \tilde x^{2}}{2} + 10 = 0$$
Given equation is hyperbole
$$- \frac{\tilde f^{2}}{10 \frac{1}{-6 + \frac{\sqrt{145}}{2}}} + \frac{\tilde x^{2}}{10 \frac{1}{6 + \frac{\sqrt{145}}{2}}} = -1$$
- reduced to canonical form
The center of canonical coordinate system at point O
(0, -24)
Basis of the canonical coordinate system
$$\vec e_1 = \left( \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}}, \ - \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}}\right)$$
$$\vec e_2 = \left( \sqrt{\frac{1}{2} - \frac{6 \sqrt{145}}{145}}, \ \sqrt{\frac{6 \sqrt{145}}{145} + \frac{1}{2}}\right)$$