Given line equation of 2-order: fx−12(x−1)2+2=0 This equation looks like: a11x2+2a12fx+2a13x+a22f2+2a23f+a33=0 where a11=−12 a12=21 a13=12 a22=0 a23=0 a33=−10 To calculate the determinant Δ=a11a12a12a22 or, substitute Δ=−1221210 Δ=−41 Because Δ is not equal to 0, then find the center of the canonical coordinate system. To do it, solve the system of equations a11x0+a12f0+a13=0 a12x0+a22f0+a23=0 substitute coefficients 2f0−12x0+12=0 2x0=0 then x0=0 f0=−24 Thus, we have the equation in the coordinate system O'x'y' a33′+a11x′2+2a12f′x′+a22f′2=0 where a33′=a13x0+a23f0+a33 or a33′=12x0−10 a33′=−10 then equation turns into f′x′−12x′2−10=0 Rotate the resulting coordinate system by an angle φ x′=−f~sin(ϕ)+x~cos(ϕ) f′=f~cos(ϕ)+x~sin(ϕ) φ - determined from the formula cot(2ϕ)=2a12a11−a22 substitute coefficients cot(2ϕ)=−12 then ϕ=−2acot(12) sin(2ϕ)=−145145 cos(2ϕ)=14512145 cos(ϕ)=2cos(2ϕ)+21 sin(ϕ)=1−cos2(ϕ) cos(ϕ)=1456145+21 sin(ϕ)=−21−1456145 substitute coefficients x′=f~21−1456145+x~1456145+21 f′=f~1456145+21−x~21−1456145 then the equation turns from f′x′−12x′2−10=0 to −12f~21−1456145+x~1456145+212+f~21−1456145+x~1456145+21f~1456145+21−x~21−1456145−10=0 simplify −6f~2+f~221−14561451456145+21+14572145f~2−24f~x~21−14561451456145+21+14512145f~x~−6x~2−14572145x~2−x~221−14561451456145+21−10=0 −2145f~2+6f~2+6x~2+2145x~2+10=0 Given equation is hyperbole −10−6+21451f~2+106+21451x~2=−1 - reduced to canonical form The center of canonical coordinate system at point O
(0, -24)
Basis of the canonical coordinate system e1=1456145+21,−21−1456145 e2=21−1456145,1456145+21
Invariants method
Given line equation of 2-order: fx−12(x−1)2+2=0 This equation looks like: a11x2+2a12fx+2a13x+a22f2+2a23f+a33=0 where a11=−12 a12=21 a13=12 a22=0 a23=0 a33=−10 The invariants of the equation when converting coordinates are determinants: I1=a11+a22
I1=−12 I2=−41 I3=25 I(λ)=λ2+12λ−41 K2=−24 Because I2<0∧I3=0 then by line type: this equation is of type : hyperbola Make the characteristic equation for the line: −I1λ+I2+λ2=0 or λ2+12λ−41=0 λ1=−2145−6 λ2=−6+2145 then the canonical form of the equation will be f~2λ2+x~2λ1+I2I3=0 or f~2(−6+2145)+x~2(−2145−6)−10=0 −10−6+21451f~2+106+21451x~2=−1 - reduced to canonical form