Mister Exam

Other calculators

9x^2+y^2+18x+2y+1=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
     2            2           
1 + y  + 2*y + 9*x  + 18*x = 0
$$9 x^{2} + 18 x + y^{2} + 2 y + 1 = 0$$
9*x^2 + 18*x + y^2 + 2*y + 1 = 0
Detail solution
Given line equation of 2-order:
$$9 x^{2} + 18 x + y^{2} + 2 y + 1 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 9$$
$$a_{12} = 0$$
$$a_{13} = 9$$
$$a_{22} = 1$$
$$a_{23} = 1$$
$$a_{33} = 1$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}9 & 0\\0 & 1\end{matrix}\right|$$
$$\Delta = 9$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$9 x_{0} + 9 = 0$$
$$y_{0} + 1 = 0$$
then
$$x_{0} = -1$$
$$y_{0} = -1$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = 9 x_{0} + y_{0} + 1$$
$$a'_{33} = -9$$
then equation turns into
$$9 x'^{2} + y'^{2} - 9 = 0$$
Given equation is ellipse
        2           2    
\tilde x    \tilde y     
--------- + --------- = 1
        2         2      
 /  1  \      / 1\       
 |-----|      \3 /       
 \3*1/3/                 

- reduced to canonical form
The center of canonical coordinate system at point O
(-1, -1)

Basis of the canonical coordinate system
$$\vec e_1 = \left( 1, \ 0\right)$$
$$\vec e_2 = \left( 0, \ 1\right)$$
Invariants method
Given line equation of 2-order:
$$9 x^{2} + 18 x + y^{2} + 2 y + 1 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 9$$
$$a_{12} = 0$$
$$a_{13} = 9$$
$$a_{22} = 1$$
$$a_{23} = 1$$
$$a_{33} = 1$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 10$$
     |9  0|
I2 = |    |
     |0  1|

$$I_{3} = \left|\begin{matrix}9 & 0 & 9\\0 & 1 & 1\\9 & 1 & 1\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}9 - \lambda & 0\\0 & 1 - \lambda\end{matrix}\right|$$
     |9  9|   |1  1|
K2 = |    | + |    |
     |9  1|   |1  1|

$$I_{1} = 10$$
$$I_{2} = 9$$
$$I_{3} = -81$$
$$I{\left(\lambda \right)} = \lambda^{2} - 10 \lambda + 9$$
$$K_{2} = -72$$
Because
$$I_{2} > 0 \wedge I_{1} I_{3} < 0$$
then by line type:
this equation is of type : ellipse
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} - 10 \lambda + 9 = 0$$
$$\lambda_{1} = 9$$
$$\lambda_{2} = 1$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$9 \tilde x^{2} + \tilde y^{2} - 9 = 0$$
        2           2    
\tilde x    \tilde y     
--------- + --------- = 1
        2         2      
 /  1  \      / 1\       
 |-----|      \3 /       
 \3*1/3/                 

- reduced to canonical form