Mister Exam

Other calculators

9x^2+4xy+6y^2+40x+20y-50=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
         2      2                          
-50 + 6*y  + 9*x  + 20*y + 40*x + 4*x*y = 0
$$9 x^{2} + 4 x y + 40 x + 6 y^{2} + 20 y - 50 = 0$$
9*x^2 + 4*x*y + 40*x + 6*y^2 + 20*y - 50 = 0
Detail solution
Given line equation of 2-order:
$$9 x^{2} + 4 x y + 40 x + 6 y^{2} + 20 y - 50 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 9$$
$$a_{12} = 2$$
$$a_{13} = 20$$
$$a_{22} = 6$$
$$a_{23} = 10$$
$$a_{33} = -50$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}9 & 2\\2 & 6\end{matrix}\right|$$
$$\Delta = 50$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$9 x_{0} + 2 y_{0} + 20 = 0$$
$$2 x_{0} + 6 y_{0} + 10 = 0$$
then
$$x_{0} = -2$$
$$y_{0} = -1$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = 20 x_{0} + 10 y_{0} - 50$$
$$a'_{33} = -100$$
then equation turns into
$$9 x'^{2} + 4 x' y' + 6 y'^{2} - 100 = 0$$
Rotate the resulting coordinate system by an angle φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = \frac{3}{4}$$
then
$$\phi = \frac{\operatorname{acot}{\left(\frac{3}{4} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{4}{5}$$
$$\cos{\left(2 \phi \right)} = \frac{3}{5}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{2 \sqrt{5}}{5}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{5}}{5}$$
substitute coefficients
$$x' = \frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}$$
$$y' = \frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}$$
then the equation turns from
$$9 x'^{2} + 4 x' y' + 6 y'^{2} - 100 = 0$$
to
$$6 \left(\frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right)^{2} + 4 \left(\frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right) \left(\frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}\right) + 9 \left(\frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}\right)^{2} - 100 = 0$$
simplify
$$10 \tilde x^{2} + 5 \tilde y^{2} - 100 = 0$$
Given equation is ellipse
         2            2     
 \tilde x     \tilde y      
----------- + ---------- = 1
          2            2    
//  ____\\    //  ___\\     
||\/ 10 ||    ||\/ 5 ||     
||------||    ||-----||     
|\  10  /|    |\  5  /|     
|--------|    |-------|     
\  1/10  /    \  1/10 /     

- reduced to canonical form
The center of canonical coordinate system at point O
(-2, -1)

Basis of the canonical coordinate system
$$\vec e_1 = \left( \frac{2 \sqrt{5}}{5}, \ \frac{\sqrt{5}}{5}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{5}}{5}, \ \frac{2 \sqrt{5}}{5}\right)$$
Invariants method
Given line equation of 2-order:
$$9 x^{2} + 4 x y + 40 x + 6 y^{2} + 20 y - 50 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 9$$
$$a_{12} = 2$$
$$a_{13} = 20$$
$$a_{22} = 6$$
$$a_{23} = 10$$
$$a_{33} = -50$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 15$$
     |9  2|
I2 = |    |
     |2  6|

$$I_{3} = \left|\begin{matrix}9 & 2 & 20\\2 & 6 & 10\\20 & 10 & -50\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}9 - \lambda & 2\\2 & 6 - \lambda\end{matrix}\right|$$
     |9   20 |   |6   10 |
K2 = |       | + |       |
     |20  -50|   |10  -50|

$$I_{1} = 15$$
$$I_{2} = 50$$
$$I_{3} = -5000$$
$$I{\left(\lambda \right)} = \lambda^{2} - 15 \lambda + 50$$
$$K_{2} = -1250$$
Because
$$I_{2} > 0 \wedge I_{1} I_{3} < 0$$
then by line type:
this equation is of type : ellipse
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} - 15 \lambda + 50 = 0$$
$$\lambda_{1} = 10$$
$$\lambda_{2} = 5$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$10 \tilde x^{2} + 5 \tilde y^{2} - 100 = 0$$
         2            2     
 \tilde x     \tilde y      
----------- + ---------- = 1
          2            2    
//  ____\\    //  ___\\     
||\/ 10 ||    ||\/ 5 ||     
||------||    ||-----||     
|\  10  /|    |\  5  /|     
|--------|    |-------|     
\  1/10  /    \  1/10 /     

- reduced to canonical form