Mister Exam

Other calculators

9x^2+121y^2=1089 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
           2        2    
-1089 + 9*x  + 121*y  = 0
$$9 x^{2} + 121 y^{2} - 1089 = 0$$
9*x^2 + 121*y^2 - 1089 = 0
Detail solution
Given line equation of 2-order:
$$9 x^{2} + 121 y^{2} - 1089 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 9$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{22} = 121$$
$$a_{23} = 0$$
$$a_{33} = -1089$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}9 & 0\\0 & 121\end{matrix}\right|$$
$$\Delta = 1089$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$9 x_{0} = 0$$
$$121 y_{0} = 0$$
then
$$x_{0} = 0$$
$$y_{0} = 0$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = -1089$$
$$a'_{33} = -1089$$
then equation turns into
$$9 x'^{2} + 121 y'^{2} - 1089 = 0$$
Given equation is ellipse
        2           2     
\tilde x    \tilde y      
--------- + ---------- = 1
        2            2    
/  1   \    /   1   \     
|------|    |-------|     
\3*1/33/    \11*1/33/     

- reduced to canonical form
The center of canonical coordinate system at point O
(0, 0)

Basis of the canonical coordinate system
$$\vec e_1 = \left( 1, \ 0\right)$$
$$\vec e_2 = \left( 0, \ 1\right)$$
Invariants method
Given line equation of 2-order:
$$9 x^{2} + 121 y^{2} - 1089 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 9$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{22} = 121$$
$$a_{23} = 0$$
$$a_{33} = -1089$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 130$$
     |9   0 |
I2 = |      |
     |0  121|

$$I_{3} = \left|\begin{matrix}9 & 0 & 0\\0 & 121 & 0\\0 & 0 & -1089\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}9 - \lambda & 0\\0 & 121 - \lambda\end{matrix}\right|$$
     |9    0  |   |121    0  |
K2 = |        | + |          |
     |0  -1089|   | 0   -1089|

$$I_{1} = 130$$
$$I_{2} = 1089$$
$$I_{3} = -1185921$$
$$I{\left(\lambda \right)} = \lambda^{2} - 130 \lambda + 1089$$
$$K_{2} = -141570$$
Because
$$I_{2} > 0 \wedge I_{1} I_{3} < 0$$
then by line type:
this equation is of type : ellipse
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} - 130 \lambda + 1089 = 0$$
$$\lambda_{1} = 121$$
$$\lambda_{2} = 9$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$121 \tilde x^{2} + 9 \tilde y^{2} - 1089 = 0$$
        2            2    
\tilde x     \tilde y     
---------- + --------- = 1
         2           2    
/   1   \    /  1   \     
|-------|    |------|     
\11*1/33/    \3*1/33/     

- reduced to canonical form