Given line equation of 2-order: 9x2−4xy+6y2=0 This equation looks like: a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0 where a11=9 a12=−2 a13=0 a22=6 a23=0 a33=0 To calculate the determinant Δ=a11a12a12a22 or, substitute Δ=9−2−26 Δ=50 Because Δ is not equal to 0, then find the center of the canonical coordinate system. To do it, solve the system of equations a11x0+a12y0+a13=0 a12x0+a22y0+a23=0 substitute coefficients 9x0−2y0=0 −2x0+6y0=0 then x0=0 y0=0 Thus, we have the equation in the coordinate system O'x'y' a33′+a11x′2+2a12x′y′+a22y′2=0 where a33′=a13x0+a23y0+a33 or a33′=0 a33′=0 then equation turns into 9x′2−4x′y′+6y′2=0 Rotate the resulting coordinate system by an angle φ x′=x~cos(ϕ)−y~sin(ϕ) y′=x~sin(ϕ)+y~cos(ϕ) φ - determined from the formula cot(2ϕ)=2a12a11−a22 substitute coefficients cot(2ϕ)=−43 then ϕ=−2acot(43) sin(2ϕ)=−54 cos(2ϕ)=53 cos(ϕ)=2cos(2ϕ)+21 sin(ϕ)=1−cos2(ϕ) cos(ϕ)=525 sin(ϕ)=−55 substitute coefficients x′=525x~+55y~ y′=−55x~+525y~ then the equation turns from 9x′2−4x′y′+6y′2=0 to 6(−55x~+525y~)2−4(−55x~+525y~)(525x~+55y~)+9(525x~+55y~)2=0 simplify 10x~2+5y~2=0 Given equation is degenerate ellipse (1010)2x~2+(55)2y~2=0 - reduced to canonical form The center of canonical coordinate system at point O
(0, 0)
Basis of the canonical coordinate system e1=(525,−55) e2=(55,525)
Invariants method
Given line equation of 2-order: 9x2−4xy+6y2=0 This equation looks like: a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0 where a11=9 a12=−2 a13=0 a22=6 a23=0 a33=0 The invariants of the equation when converting coordinates are determinants: I1=a11+a22
I1=15 I2=50 I3=0 I(λ)=λ2−15λ+50 K2=0 Because I3=0∧I2>0 then by line type: this equation is of type : degenerate ellipse Make the characteristic equation for the line: −I1λ+I2+λ2=0 or λ2−15λ+50=0 λ1=10 λ2=5 then the canonical form of the equation will be x~2λ1+y~2λ2+I2I3=0 or 10x~2+5y~2=0 (1010)2x~2+(55)2y~2=0 - reduced to canonical form