Mister Exam

9x^2-4xy+6y^2 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
   2      2            
6*y  + 9*x  - 4*x*y = 0
9x24xy+6y2=09 x^{2} - 4 x y + 6 y^{2} = 0
9*x^2 - 4*x*y + 6*y^2 = 0
Detail solution
Given line equation of 2-order:
9x24xy+6y2=09 x^{2} - 4 x y + 6 y^{2} = 0
This equation looks like:
a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0
where
a11=9a_{11} = 9
a12=2a_{12} = -2
a13=0a_{13} = 0
a22=6a_{22} = 6
a23=0a_{23} = 0
a33=0a_{33} = 0
To calculate the determinant
Δ=a11a12a12a22\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|
or, substitute
Δ=9226\Delta = \left|\begin{matrix}9 & -2\\-2 & 6\end{matrix}\right|
Δ=50\Delta = 50
Because
Δ\Delta
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
a11x0+a12y0+a13=0a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0
a12x0+a22y0+a23=0a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0
substitute coefficients
9x02y0=09 x_{0} - 2 y_{0} = 0
2x0+6y0=0- 2 x_{0} + 6 y_{0} = 0
then
x0=0x_{0} = 0
y0=0y_{0} = 0
Thus, we have the equation in the coordinate system O'x'y'
a33+a11x2+2a12xy+a22y2=0a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0
where
a33=a13x0+a23y0+a33a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}
or
a33=0a'_{33} = 0
a33=0a'_{33} = 0
then equation turns into
9x24xy+6y2=09 x'^{2} - 4 x' y' + 6 y'^{2} = 0
Rotate the resulting coordinate system by an angle φ
x=x~cos(ϕ)y~sin(ϕ)x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}
y=x~sin(ϕ)+y~cos(ϕ)y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}
φ - determined from the formula
cot(2ϕ)=a11a222a12\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}
substitute coefficients
cot(2ϕ)=34\cot{\left(2 \phi \right)} = - \frac{3}{4}
then
ϕ=acot(34)2\phi = - \frac{\operatorname{acot}{\left(\frac{3}{4} \right)}}{2}
sin(2ϕ)=45\sin{\left(2 \phi \right)} = - \frac{4}{5}
cos(2ϕ)=35\cos{\left(2 \phi \right)} = \frac{3}{5}
cos(ϕ)=cos(2ϕ)2+12\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}
sin(ϕ)=1cos2(ϕ)\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}
cos(ϕ)=255\cos{\left(\phi \right)} = \frac{2 \sqrt{5}}{5}
sin(ϕ)=55\sin{\left(\phi \right)} = - \frac{\sqrt{5}}{5}
substitute coefficients
x=25x~5+5y~5x' = \frac{2 \sqrt{5} \tilde x}{5} + \frac{\sqrt{5} \tilde y}{5}
y=5x~5+25y~5y' = - \frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}
then the equation turns from
9x24xy+6y2=09 x'^{2} - 4 x' y' + 6 y'^{2} = 0
to
6(5x~5+25y~5)24(5x~5+25y~5)(25x~5+5y~5)+9(25x~5+5y~5)2=06 \left(- \frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right)^{2} - 4 \left(- \frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right) \left(\frac{2 \sqrt{5} \tilde x}{5} + \frac{\sqrt{5} \tilde y}{5}\right) + 9 \left(\frac{2 \sqrt{5} \tilde x}{5} + \frac{\sqrt{5} \tilde y}{5}\right)^{2} = 0
simplify
10x~2+5y~2=010 \tilde x^{2} + 5 \tilde y^{2} = 0
Given equation is degenerate ellipse
x~2(1010)2+y~2(55)2=0\frac{\tilde x^{2}}{\left(\frac{\sqrt{10}}{10}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{\sqrt{5}}{5}\right)^{2}} = 0
- reduced to canonical form
The center of canonical coordinate system at point O
(0, 0)

Basis of the canonical coordinate system
e1=(255, 55)\vec e_1 = \left( \frac{2 \sqrt{5}}{5}, \ - \frac{\sqrt{5}}{5}\right)
e2=(55, 255)\vec e_2 = \left( \frac{\sqrt{5}}{5}, \ \frac{2 \sqrt{5}}{5}\right)
Invariants method
Given line equation of 2-order:
9x24xy+6y2=09 x^{2} - 4 x y + 6 y^{2} = 0
This equation looks like:
a11x2+2a12xy+2a13x+a22y2+2a23y+a33=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0
where
a11=9a_{11} = 9
a12=2a_{12} = -2
a13=0a_{13} = 0
a22=6a_{22} = 6
a23=0a_{23} = 0
a33=0a_{33} = 0
The invariants of the equation when converting coordinates are determinants:
I1=a11+a22I_{1} = a_{11} + a_{22}
     |a11  a12|
I2 = |        |
     |a12  a22|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I(λ)=a11λa12a12a22λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
I1=15I_{1} = 15
     |9   -2|
I2 = |      |
     |-2  6 |

I3=920260000I_{3} = \left|\begin{matrix}9 & -2 & 0\\-2 & 6 & 0\\0 & 0 & 0\end{matrix}\right|
I(λ)=9λ226λI{\left(\lambda \right)} = \left|\begin{matrix}9 - \lambda & -2\\-2 & 6 - \lambda\end{matrix}\right|
     |9  0|   |6  0|
K2 = |    | + |    |
     |0  0|   |0  0|

I1=15I_{1} = 15
I2=50I_{2} = 50
I3=0I_{3} = 0
I(λ)=λ215λ+50I{\left(\lambda \right)} = \lambda^{2} - 15 \lambda + 50
K2=0K_{2} = 0
Because
I3=0I2>0I_{3} = 0 \wedge I_{2} > 0
then by line type:
this equation is of type : degenerate ellipse
Make the characteristic equation for the line:
I1λ+I2+λ2=0- I_{1} \lambda + I_{2} + \lambda^{2} = 0
or
λ215λ+50=0\lambda^{2} - 15 \lambda + 50 = 0
λ1=10\lambda_{1} = 10
λ2=5\lambda_{2} = 5
then the canonical form of the equation will be
x~2λ1+y~2λ2+I3I2=0\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0
or
10x~2+5y~2=010 \tilde x^{2} + 5 \tilde y^{2} = 0
x~2(1010)2+y~2(55)2=0\frac{\tilde x^{2}}{\left(\frac{\sqrt{10}}{10}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{\sqrt{5}}{5}\right)^{2}} = 0
- reduced to canonical form