Given equation of the surface of 2-order:
$$4 x y + 2 x z + 8 x + 8 y^{2} + 4 y z + 6 y + 4 z + 5 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
where
$$a_{11} = 0$$
$$a_{12} = 2$$
$$a_{13} = 1$$
$$a_{14} = 4$$
$$a_{22} = 8$$
$$a_{23} = 2$$
$$a_{24} = 3$$
$$a_{33} = 0$$
$$a_{34} = 2$$
$$a_{44} = 5$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
|a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33|$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
|a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44|substitute coefficients
$$I_{1} = 8$$
|0 2| |8 2| |0 1|
I2 = | | + | | + | |
|2 8| |2 0| |1 0|$$I_{3} = \left|\begin{matrix}0 & 2 & 1\\2 & 8 & 2\\1 & 2 & 0\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}0 & 2 & 1 & 4\\2 & 8 & 2 & 3\\1 & 2 & 0 & 2\\4 & 3 & 2 & 5\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 2 & 1\\2 & 8 - \lambda & 2\\1 & 2 & - \lambda\end{matrix}\right|$$
|0 4| |8 3| |0 2|
K2 = | | + | | + | |
|4 5| |3 5| |2 5| |0 2 4| |8 2 3| |0 1 4|
| | | | | |
K3 = |2 8 3| + |2 0 2| + |1 0 2|
| | | | | |
|4 3 5| |3 2 5| |4 2 5|$$I_{1} = 8$$
$$I_{2} = -9$$
$$I_{3} = 0$$
$$I_{4} = 81$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 8 \lambda^{2} + 9 \lambda$$
$$K_{2} = 11$$
$$K_{3} = -117$$
Because
$$I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0$$
then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - 8 \lambda^{2} - 9 \lambda = 0$$
$$\lambda_{1} = 9$$
$$\lambda_{2} = -1$$
$$\lambda_{3} = 0$$
then the canonical form of the equation will be
$$\tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
and
$$- \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
$$9 \tilde x^{2} - \tilde y^{2} + 6 \tilde z = 0$$
and
$$9 \tilde x^{2} - \tilde y^{2} - 6 \tilde z = 0$$
2 2
\tilde x \tilde y
--------- - --------- + 2*\tilde z = 0
1/3 3
and
2 2
\tilde x \tilde y
--------- - --------- - 2*\tilde z = 0
1/3 3
this equation is fora type hyperbolic paraboloid
- reduced to canonical form