Mister Exam

7y^2+3x-28y canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
                 2    
-28*y + 3*x + 7*y  = 0
7y2+3x28y=07 y^{2} + 3 x - 28 y = 0
3*x + 7*y^2 - 28*y = 0
Detail solution
Given line equation of 2-order:
7y2+3x28y=07 y^{2} + 3 x - 28 y = 0
This equation looks like:
a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0a_{11} x^{2} + 2 a_{12} x y + a_{22} y^{2} + 2 a_{13} x + 2 a_{23} y + a_{33} = 0
where
a11=0a_{11} = 0
a12=0a_{12} = 0
a13=32a_{13} = \frac{3}{2}
a22=7a_{22} = 7
a23=14a_{23} = -14
a33=0a_{33} = 0
To calculate the determinant
Δ=a11a12a12a22\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|
or, substitute
Δ=0007\Delta = \left|\begin{matrix}0 & 0\\0 & 7\end{matrix}\right|
Δ=0\Delta = 0
Because
Δ\Delta
is equal to 0, then
Given equation is straight line
- reduced to canonical form
The center of the canonical coordinate system in OXY
x0=x~cos(ϕ)y~sin(ϕ)x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}
y0=x~sin(ϕ)+y~cos(ϕ)y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}
x0=01+00x_{0} = 0 \cdot 1 + 0 \cdot 0
y0=00+01y_{0} = 0 \cdot 0 + 0 \cdot 1
x0=0x_{0} = 0
y0=0y_{0} = 0
The center of canonical coordinate system at point O
(0, 0)

Basis of the canonical coordinate system
e1=(1, 0)\vec e_{1} = \left( 1, \ 0\right)
e2=(0, 1)\vec e_{2} = \left( 0, \ 1\right)
Invariants method
Given line equation of 2-order:
7y2+3x28y=07 y^{2} + 3 x - 28 y = 0
This equation looks like:
a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0a_{11} x^{2} + 2 a_{12} x y + a_{22} y^{2} + 2 a_{13} x + 2 a_{23} y + a_{33} = 0
where
a11=0a_{11} = 0
a12=0a_{12} = 0
a13=32a_{13} = \frac{3}{2}
a22=7a_{22} = 7
a23=14a_{23} = -14
a33=0a_{33} = 0
The invariants of the equation when converting coordinates are determinants:
I1=a11+a22I_{1} = a_{11} + a_{22}
     |a11  a12|
I2 = |        |
     |a12  a22|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I(λ)=a11λa12a12a22λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
I1=7I_{1} = 7
     |0  0|
I2 = |    |
     |0  7|

I3=0032071432140I_{3} = \left|\begin{matrix}0 & 0 & \frac{3}{2}\\0 & 7 & -14\\\frac{3}{2} & -14 & 0\end{matrix}\right|
I(λ)=λ00λ+7I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 0\\0 & - \lambda + 7\end{matrix}\right|
     | 0   3/2|   | 7   -14|
K2 = |        | + |        |
     |3/2   0 |   |-14   0 |

I1=7I_{1} = 7
I2=0I_{2} = 0
I3=634I_{3} = - \frac{63}{4}
I(λ)=λ27λI{\left(\lambda \right)} = \lambda^{2} - 7 \lambda
K2=7934K_{2} = - \frac{793}{4}
Because
I2=0I30I_{2} = 0 \wedge I_{3} \neq 0
then by line type:
this equation is of type : parabola
I1y~2+2x~I3I1=0I_{1} \tilde y^{2} + 2 \tilde x \sqrt{- \frac{I_{3}}{I_{1}}} = 0
or
7y~2+3x~=07 \tilde y^{2} + 3 \tilde x = 0
y~2=3x~7\tilde y^{2} = \frac{3 \tilde x}{7}
- reduced to canonical form
The graph
7y^2+3x-28y canonical form