Mister Exam

Other calculators

7x^2+7y^2+40z^2-4xy+20xz+20yz-4x-4y+2z=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
                      2      2       2                              
-4*x - 4*y + 2*z + 7*x  + 7*y  + 40*z  - 4*x*y + 20*x*z + 20*y*z = 0
$$7 x^{2} - 4 x y + 20 x z - 4 x + 7 y^{2} + 20 y z - 4 y + 40 z^{2} + 2 z = 0$$
7*x^2 - 4*x*y + 20*x*z - 4*x + 7*y^2 + 20*y*z - 4*y + 40*z^2 + 2*z = 0
Invariants method
Given equation of the surface of 2-order:
$$7 x^{2} - 4 x y + 20 x z - 4 x + 7 y^{2} + 20 y z - 4 y + 40 z^{2} + 2 z = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
where
$$a_{11} = 7$$
$$a_{12} = -2$$
$$a_{13} = 10$$
$$a_{14} = -2$$
$$a_{22} = 7$$
$$a_{23} = 10$$
$$a_{24} = -2$$
$$a_{33} = 40$$
$$a_{34} = 1$$
$$a_{44} = 0$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 54$$
     |7   -2|   |7   10|   |7   10|
I2 = |      | + |      | + |      |
     |-2  7 |   |10  40|   |10  40|

$$I_{3} = \left|\begin{matrix}7 & -2 & 10\\-2 & 7 & 10\\10 & 10 & 40\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}7 & -2 & 10 & -2\\-2 & 7 & 10 & -2\\10 & 10 & 40 & 1\\-2 & -2 & 1 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}7 - \lambda & -2 & 10\\-2 & 7 - \lambda & 10\\10 & 10 & 40 - \lambda\end{matrix}\right|$$
     |7   -2|   |7   -2|   |40  1|
K2 = |      | + |      | + |     |
     |-2  0 |   |-2  0 |   |1   0|

     |7   -2  -2|   |7   10  -2|   |7   10  -2|
     |          |   |          |   |          |
K3 = |-2  7   -2| + |10  40  1 | + |10  40  1 |
     |          |   |          |   |          |
     |-2  -2  0 |   |-2  1   0 |   |-2  1   0 |

$$I_{1} = 54$$
$$I_{2} = 405$$
$$I_{3} = 0$$
$$I_{4} = -3645$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 54 \lambda^{2} - 405 \lambda$$
$$K_{2} = -9$$
$$K_{3} = -486$$
Because
$$I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0$$
then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - 54 \lambda^{2} + 405 \lambda = 0$$
$$\lambda_{1} = 45$$
$$\lambda_{2} = 9$$
$$\lambda_{3} = 0$$
then the canonical form of the equation will be
$$\tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
and
$$- \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
$$45 \tilde x^{2} + 9 \tilde y^{2} + 6 \tilde z = 0$$
and
$$45 \tilde x^{2} + 9 \tilde y^{2} - 6 \tilde z = 0$$
        2           2                 
\tilde x    \tilde y                  
--------- + --------- + 2*\tilde z = 0
   1/15        1/3                    

and
        2           2                 
\tilde x    \tilde y                  
--------- + --------- - 2*\tilde z = 0
   1/15        1/3                    

this equation is fora type elliptical paraboloid
- reduced to canonical form