Mister Exam

Other calculators

6x1^2+5x2^2+7x3^2-4x1x2+4x1x3=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
    2       2       2                        
5*x2  + 6*x1  + 7*x3  - 4*x1*x2 + 4*x1*x3 = 0
$$6 x_{1}^{2} - 4 x_{1} x_{2} + 4 x_{1} x_{3} + 5 x_{2}^{2} + 7 x_{3}^{2} = 0$$
6*x1^2 - 4*x1*x2 + 4*x1*x3 + 5*x2^2 + 7*x3^2 = 0
Invariants method
Given equation of the surface of 2-order:
$$6 x_{1}^{2} - 4 x_{1} x_{2} + 4 x_{1} x_{3} + 5 x_{2}^{2} + 7 x_{3}^{2} = 0$$
This equation looks like:
$$a_{11} x_{3}^{2} + 2 a_{12} x_{2} x_{3} + 2 a_{13} x_{1} x_{3} + 2 a_{14} x_{3} + a_{22} x_{2}^{2} + 2 a_{23} x_{1} x_{2} + 2 a_{24} x_{2} + a_{33} x_{1}^{2} + 2 a_{34} x_{1} + a_{44} = 0$$
where
$$a_{11} = 7$$
$$a_{12} = 0$$
$$a_{13} = 2$$
$$a_{14} = 0$$
$$a_{22} = 5$$
$$a_{23} = -2$$
$$a_{24} = 0$$
$$a_{33} = 6$$
$$a_{34} = 0$$
$$a_{44} = 0$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 18$$
     |7  0|   |5   -2|   |7  2|
I2 = |    | + |      | + |    |
     |0  5|   |-2  6 |   |2  6|

$$I_{3} = \left|\begin{matrix}7 & 0 & 2\\0 & 5 & -2\\2 & -2 & 6\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}7 & 0 & 2 & 0\\0 & 5 & -2 & 0\\2 & -2 & 6 & 0\\0 & 0 & 0 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}7 - \lambda & 0 & 2\\0 & 5 - \lambda & -2\\2 & -2 & 6 - \lambda\end{matrix}\right|$$
     |7  0|   |5  0|   |6  0|
K2 = |    | + |    | + |    |
     |0  0|   |0  0|   |0  0|

     |7  0  0|   |5   -2  0|   |7  2  0|
     |       |   |         |   |       |
K3 = |0  5  0| + |-2  6   0| + |2  6  0|
     |       |   |         |   |       |
     |0  0  0|   |0   0   0|   |0  0  0|

$$I_{1} = 18$$
$$I_{2} = 99$$
$$I_{3} = 162$$
$$I_{4} = 0$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 18 \lambda^{2} - 99 \lambda + 162$$
$$K_{2} = 0$$
$$K_{3} = 0$$
Because
I3 != 0

then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - 18 \lambda^{2} + 99 \lambda - 162 = 0$$
$$\lambda_{1} = 9$$
$$\lambda_{2} = 6$$
$$\lambda_{3} = 3$$
then the canonical form of the equation will be
$$\left(\tilde x1^{2} \lambda_{3} + \left(\tilde x2^{2} \lambda_{2} + \tilde x3^{2} \lambda_{1}\right)\right) + \frac{I_{4}}{I_{3}} = 0$$
$$3 \tilde x1^{2} + 6 \tilde x2^{2} + 9 \tilde x3^{2} = 0$$
$$\frac{\tilde x1^{2}}{\left(\frac{\sqrt{3}}{3}\right)^{2}} + \left(\frac{\tilde x2^{2}}{\left(\frac{\sqrt{6}}{6}\right)^{2}} + \frac{\tilde x3^{2}}{\left(\frac{1}{3}\right)^{2}}\right) = 0$$
this equation is fora type imaginary cone
- reduced to canonical form