Mister Exam

Other calculators


4x^2+2y^2-8x-4y+10=0

4x^2+2y^2-8x-4y+10=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
                    2      2    
10 - 8*x - 4*y + 2*y  + 4*x  = 0
$$4 x^{2} - 8 x + 2 y^{2} - 4 y + 10 = 0$$
4*x^2 - 8*x + 2*y^2 - 4*y + 10 = 0
Detail solution
Given line equation of 2-order:
$$4 x^{2} - 8 x + 2 y^{2} - 4 y + 10 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 4$$
$$a_{12} = 0$$
$$a_{13} = -4$$
$$a_{22} = 2$$
$$a_{23} = -2$$
$$a_{33} = 10$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}4 & 0\\0 & 2\end{matrix}\right|$$
$$\Delta = 8$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$4 x_{0} - 4 = 0$$
$$2 y_{0} - 2 = 0$$
then
$$x_{0} = 1$$
$$y_{0} = 1$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = - 4 x_{0} - 2 y_{0} + 10$$
$$a'_{33} = 4$$
then equation turns into
$$4 x'^{2} + 2 y'^{2} + 4 = 0$$
Given equation is imaginary ellipse
$$\frac{\tilde x^{2}}{1^{2}} + \frac{\tilde y^{2}}{\left(\sqrt{2}\right)^{2}} = -1$$
- reduced to canonical form
The center of canonical coordinate system at point O
(1, 1)

Basis of the canonical coordinate system
$$\vec e_{1} = \left( 1, \ 0\right)$$
$$\vec e_{2} = \left( 0, \ 1\right)$$
Invariants method
Given line equation of 2-order:
$$4 x^{2} - 8 x + 2 y^{2} - 4 y + 10 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 4$$
$$a_{12} = 0$$
$$a_{13} = -4$$
$$a_{22} = 2$$
$$a_{23} = -2$$
$$a_{33} = 10$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 6$$
     |4  0|
I2 = |    |
     |0  2|

$$I_{3} = \left|\begin{matrix}4 & 0 & -4\\0 & 2 & -2\\-4 & -2 & 10\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}4 - \lambda & 0\\0 & 2 - \lambda\end{matrix}\right|$$
     |4   -4|   |2   -2|
K2 = |      | + |      |
     |-4  10|   |-2  10|

$$I_{1} = 6$$
$$I_{2} = 8$$
$$I_{3} = 32$$
$$I{\left(\lambda \right)} = \lambda^{2} - 6 \lambda + 8$$
$$K_{2} = 40$$
Because
$$I_{2} > 0 \wedge I_{1} I_{3} > 0$$
then by line type:
this equation is of type : imaginary ellipse
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} - 6 \lambda + 8 = 0$$
Solve this equation
$$\lambda_{1} = 4$$
$$\lambda_{2} = 2$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$4 \tilde x^{2} + 2 \tilde y^{2} + 4 = 0$$
$$\frac{\tilde x^{2}}{1^{2}} + \frac{\tilde y^{2}}{\left(\sqrt{2}\right)^{2}} = -1$$
- reduced to canonical form
The graph
4x^2+2y^2-8x-4y+10=0 canonical form