Mister Exam

Other calculators

4x^2-5y^2+4z^2=-20 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
        2      2      2    
20 - 5*y  + 4*x  + 4*z  = 0
$$4 x^{2} - 5 y^{2} + 4 z^{2} + 20 = 0$$
4*x^2 - 5*y^2 + 4*z^2 + 20 = 0
Invariants method
Given equation of the surface of 2-order:
$$4 x^{2} - 5 y^{2} + 4 z^{2} + 20 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
where
$$a_{11} = 4$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{14} = 0$$
$$a_{22} = -5$$
$$a_{23} = 0$$
$$a_{24} = 0$$
$$a_{33} = 4$$
$$a_{34} = 0$$
$$a_{44} = 20$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 3$$
     |4  0 |   |-5  0|   |4  0|
I2 = |     | + |     | + |    |
     |0  -5|   |0   4|   |0  4|

$$I_{3} = \left|\begin{matrix}4 & 0 & 0\\0 & -5 & 0\\0 & 0 & 4\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}4 & 0 & 0 & 0\\0 & -5 & 0 & 0\\0 & 0 & 4 & 0\\0 & 0 & 0 & 20\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}4 - \lambda & 0 & 0\\0 & - \lambda - 5 & 0\\0 & 0 & 4 - \lambda\end{matrix}\right|$$
     |4  0 |   |-5  0 |   |4  0 |
K2 = |     | + |      | + |     |
     |0  20|   |0   20|   |0  20|

     |4  0   0 |   |-5  0  0 |   |4  0  0 |
     |         |   |         |   |        |
K3 = |0  -5  0 | + |0   4  0 | + |0  4  0 |
     |         |   |         |   |        |
     |0  0   20|   |0   0  20|   |0  0  20|

$$I_{1} = 3$$
$$I_{2} = -24$$
$$I_{3} = -80$$
$$I_{4} = -1600$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 3 \lambda^{2} + 24 \lambda - 80$$
$$K_{2} = 60$$
$$K_{3} = -480$$
Because
I3 != 0

then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - 3 \lambda^{2} - 24 \lambda + 80 = 0$$
$$\lambda_{1} = -5$$
$$\lambda_{2} = 4$$
$$\lambda_{3} = 4$$
then the canonical form of the equation will be
$$\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0$$
$$- 5 \tilde x^{2} + 4 \tilde y^{2} + 4 \tilde z^{2} + 20 = 0$$
$$- \frac{\tilde x^{2}}{\left(\frac{\frac{1}{5} \sqrt{5}}{\frac{1}{10} \sqrt{5}}\right)^{2}} + \left(\frac{\tilde y^{2}}{\left(\frac{1}{2 \frac{\sqrt{5}}{10}}\right)^{2}} + \frac{\tilde z^{2}}{\left(\frac{1}{2 \frac{\sqrt{5}}{10}}\right)^{2}}\right) = -1$$
this equation is fora type two-sided hyperboloid
- reduced to canonical form