Mister Exam

Other calculators

3y^2+3x^2=z canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
        2      2    
-z + 3*x  + 3*y  = 0
3x2+3y2z=03 x^{2} + 3 y^{2} - z = 0
3*x^2 + 3*y^2 - z = 0
Invariants method
Given equation of the surface of 2-order:
3x2+3y2z=03 x^{2} + 3 y^{2} - z = 0
This equation looks like:
a11x2+2a12xy+2a13xz+2a14x+a22y2+2a23yz+2a24y+a33z2+2a34z+a44=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0
where
a11=3a_{11} = 3
a12=0a_{12} = 0
a13=0a_{13} = 0
a14=0a_{14} = 0
a22=3a_{22} = 3
a23=0a_{23} = 0
a24=0a_{24} = 0
a33=0a_{33} = 0
a34=12a_{34} = - \frac{1}{2}
a44=0a_{44} = 0
The invariants of the equation when converting coordinates are determinants:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
I1=6I_{1} = 6
     |3  0|   |3  0|   |3  0|
I2 = |    | + |    | + |    |
     |0  3|   |0  0|   |0  0|

I3=300030000I_{3} = \left|\begin{matrix}3 & 0 & 0\\0 & 3 & 0\\0 & 0 & 0\end{matrix}\right|
I4=300003000001200120I_{4} = \left|\begin{matrix}3 & 0 & 0 & 0\\0 & 3 & 0 & 0\\0 & 0 & 0 & - \frac{1}{2}\\0 & 0 & - \frac{1}{2} & 0\end{matrix}\right|
I(λ)=3λ0003λ000λI{\left(\lambda \right)} = \left|\begin{matrix}3 - \lambda & 0 & 0\\0 & 3 - \lambda & 0\\0 & 0 & - \lambda\end{matrix}\right|
     |3  0|   |3  0|   | 0    -1/2|
K2 = |    | + |    | + |          |
     |0  0|   |0  0|   |-1/2   0  |

     |3  0  0|   |3   0     0  |   |3   0     0  |
     |       |   |             |   |             |
K3 = |0  3  0| + |0   0    -1/2| + |0   0    -1/2|
     |       |   |             |   |             |
     |0  0  0|   |0  -1/2   0  |   |0  -1/2   0  |

I1=6I_{1} = 6
I2=9I_{2} = 9
I3=0I_{3} = 0
I4=94I_{4} = - \frac{9}{4}
I(λ)=λ3+6λ29λI{\left(\lambda \right)} = - \lambda^{3} + 6 \lambda^{2} - 9 \lambda
K2=14K_{2} = - \frac{1}{4}
K3=32K_{3} = - \frac{3}{2}
Because
I3=0I20I40I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0
then by type of surface:
you need to
Make the characteristic equation for the surface:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
or
λ36λ2+9λ=0\lambda^{3} - 6 \lambda^{2} + 9 \lambda = 0
Solve this equation
λ1=3\lambda_{1} = 3
λ2=3\lambda_{2} = 3
λ3=0\lambda_{3} = 0
then the canonical form of the equation will be
z~2(1)I4I2+(x~2λ1+y~2λ2)=0\tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
and
z~2(1)I4I2+(x~2λ1+y~2λ2)=0- \tilde z 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
3x~2+3y~2+z~=03 \tilde x^{2} + 3 \tilde y^{2} + \tilde z = 0
and
3x~2+3y~2z~=03 \tilde x^{2} + 3 \tilde y^{2} - \tilde z = 0
6x~2+6y~2+2z~=06 \tilde x^{2} + 6 \tilde y^{2} + 2 \tilde z = 0
and
6x~2+6y~22z~=06 \tilde x^{2} + 6 \tilde y^{2} - 2 \tilde z = 0
this equation is fora type elliptical paraboloid
- reduced to canonical form