Mister Exam

Other calculators

3x1^2+3x2^2+3x3^2+2x1x2+2x1x3-2x2x3 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
    2       2       2                                  
3*x1  + 3*x2  + 3*x3  - 2*x2*x3 + 2*x1*x2 + 2*x1*x3 = 0
$$3 x_{1}^{2} + 2 x_{1} x_{2} + 2 x_{1} x_{3} + 3 x_{2}^{2} - 2 x_{2} x_{3} + 3 x_{3}^{2} = 0$$
3*x1^2 + 2*x1*x2 + 2*x1*x3 + 3*x2^2 - 2*x2*x3 + 3*x3^2 = 0
Invariants method
Given equation of the surface of 2-order:
$$3 x_{1}^{2} + 2 x_{1} x_{2} + 2 x_{1} x_{3} + 3 x_{2}^{2} - 2 x_{2} x_{3} + 3 x_{3}^{2} = 0$$
This equation looks like:
$$a_{11} x_{3}^{2} + 2 a_{12} x_{2} x_{3} + 2 a_{13} x_{1} x_{3} + a_{22} x_{2}^{2} + 2 a_{23} x_{1} x_{2} + a_{33} x_{1}^{2} + 2 a_{14} x_{3} + 2 a_{24} x_{2} + 2 a_{34} x_{1} + a_{44} = 0$$
where
$$a_{11} = 3$$
$$a_{12} = -1$$
$$a_{13} = 1$$
$$a_{14} = 0$$
$$a_{22} = 3$$
$$a_{23} = 1$$
$$a_{24} = 0$$
$$a_{33} = 3$$
$$a_{34} = 0$$
$$a_{44} = 0$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 9$$
     |3   -1|   |3  1|   |3  1|
I2 = |      | + |    | + |    |
     |-1  3 |   |1  3|   |1  3|

$$I_{3} = \left|\begin{matrix}3 & -1 & 1\\-1 & 3 & 1\\1 & 1 & 3\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}3 & -1 & 1 & 0\\-1 & 3 & 1 & 0\\1 & 1 & 3 & 0\\0 & 0 & 0 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda + 3 & -1 & 1\\-1 & - \lambda + 3 & 1\\1 & 1 & - \lambda + 3\end{matrix}\right|$$
     |3  0|   |3  0|   |3  0|
K2 = |    | + |    | + |    |
     |0  0|   |0  0|   |0  0|

     |3   -1  0|   |3  1  0|   |3  1  0|
     |         |   |       |   |       |
K3 = |-1  3   0| + |1  3  0| + |1  3  0|
     |         |   |       |   |       |
     |0   0   0|   |0  0  0|   |0  0  0|

$$I_{1} = 9$$
$$I_{2} = 24$$
$$I_{3} = 16$$
$$I_{4} = 0$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 9 \lambda^{2} - 24 \lambda + 16$$
$$K_{2} = 0$$
$$K_{3} = 0$$
Because
I3 != 0

then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + \lambda^{3} + I_{2} \lambda - I_{3} = 0$$
or
$$\lambda^{3} - 9 \lambda^{2} + 24 \lambda - 16 = 0$$
Solve this equation
$$\lambda_{1} = 1$$
$$\lambda_{2} = 4$$
$$\lambda_{3} = 4$$
then the canonical form of the equation will be
$$\left(\tilde x1^{2} \lambda_{3} + \left(\tilde x2^{2} \lambda_{2} + \tilde x3^{2} \lambda_{1}\right)\right) + \frac{I_{4}}{I_{3}} = 0$$
$$4 \tilde x1^{2} + 4 \tilde x2^{2} + \tilde x3^{2} = 0$$
$$\frac{\tilde x1^{2}}{\left(\frac{1}{2}\right)^{2}} + \left(\frac{\tilde x2^{2}}{\left(\frac{1}{2}\right)^{2}} + \frac{\tilde x3^{2}}{1^{2}}\right) = 0$$
this equation is fora type imaginary cone
- reduced to canonical form