For example, you have entered (calculator here ):
2 x 2 − 4 x y + 4 y 2 − 4 y + z 2 − 2 z + 5 = 0 2 x^{2} - 4 x y + 4 y^{2} - 4 y + z^{2} - 2 z + 5 = 0 2 x 2 − 4 x y + 4 y 2 − 4 y + z 2 − 2 z + 5 = 0
Detail solution (Invariants method)
Given equation of the surface of 2-order:2 x 2 − 4 x y + 4 y 2 − 4 y + z 2 − 2 z + 5 = 0 2 x^{2} - 4 x y + 4 y^{2} - 4 y + z^{2} - 2 z + 5 = 0 2 x 2 − 4 x y + 4 y 2 − 4 y + z 2 − 2 z + 5 = 0 This equation looks like:a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 y z + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0 a 11 x 2 + 2 a 12 x y + 2 a 13 x z + 2 a 14 x + a 22 y 2 + 2 a 23 yz + 2 a 24 y + a 33 z 2 + 2 a 34 z + a 44 = 0 wherea 11 = 2 a_{11} = 2 a 11 = 2 a 12 = − 2 a_{12} = -2 a 12 = − 2 a 13 = 0 a_{13} = 0 a 13 = 0 a 14 = 0 a_{14} = 0 a 14 = 0 a 22 = 4 a_{22} = 4 a 22 = 4 a 23 = 0 a_{23} = 0 a 23 = 0 a 24 = − 2 a_{24} = -2 a 24 = − 2 a 33 = 1 a_{33} = 1 a 33 = 1 a 34 = − 1 a_{34} = -1 a 34 = − 1 a 44 = 5 a_{44} = 5 a 44 = 5 The invariants of the equation when converting coordinates are determinants:I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| substitute coefficientsI 1 = 7 I_{1} = 7 I 1 = 7 |2 -2| |4 0| |2 0|
I2 = | | + | | + | |
|-2 4 | |0 1| |0 1| I 3 = ∣ 2 − 2 0 − 2 4 0 0 0 1 ∣ I_{3} = \left|\begin{matrix}2 & -2 & 0\\-2 & 4 & 0\\0 & 0 & 1\end{matrix}\right| I 3 = 2 − 2 0 − 2 4 0 0 0 1 I 4 = ∣ 2 − 2 0 0 − 2 4 0 − 2 0 0 1 − 1 0 − 2 − 1 5 ∣ I_{4} = \left|\begin{matrix}2 & -2 & 0 & 0\\-2 & 4 & 0 & -2\\0 & 0 & 1 & -1\\0 & -2 & -1 & 5\end{matrix}\right| I 4 = 2 − 2 0 0 − 2 4 0 − 2 0 0 1 − 1 0 − 2 − 1 5 I ( λ ) = ∣ 2 − λ − 2 0 − 2 4 − λ 0 0 0 1 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}2 - \lambda & -2 & 0\\-2 & 4 - \lambda & 0\\0 & 0 & 1 - \lambda\end{matrix}\right| I ( λ ) = 2 − λ − 2 0 − 2 4 − λ 0 0 0 1 − λ |2 0| |4 -2| |1 -1|
K2 = | | + | | + | |
|0 5| |-2 5 | |-1 5 | |2 -2 0 | |4 0 -2| |2 0 0 |
| | | | | |
K3 = |-2 4 -2| + |0 1 -1| + |0 1 -1|
| | | | | |
|0 -2 5 | |-2 -1 5 | |0 -1 5 | I 1 = 7 I_{1} = 7 I 1 = 7 I 2 = 10 I_{2} = 10 I 2 = 10 I 3 = 4 I_{3} = 4 I 3 = 4 I 4 = 8 I_{4} = 8 I 4 = 8 I ( λ ) = − λ 3 + 7 λ 2 − 10 λ + 4 I{\left(\lambda \right)} = - \lambda^{3} + 7 \lambda^{2} - 10 \lambda + 4 I ( λ ) = − λ 3 + 7 λ 2 − 10 λ + 4 K 2 = 30 K_{2} = 30 K 2 = 30 K 3 = 32 K_{3} = 32 K 3 = 32 BecauseI3 != 0 then by type of surface: you need to Make the characteristic equation for the surface:− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 orλ 3 − 7 λ 2 + 10 λ − 4 = 0 \lambda^{3} - 7 \lambda^{2} + 10 \lambda - 4 = 0 λ 3 − 7 λ 2 + 10 λ − 4 = 0 λ 1 = 1 \lambda_{1} = 1 λ 1 = 1 λ 2 = 3 − 5 \lambda_{2} = 3 - \sqrt{5} λ 2 = 3 − 5 λ 3 = 5 + 3 \lambda_{3} = \sqrt{5} + 3 λ 3 = 5 + 3 then the canonical form of the equation will be( z ~ 2 λ 3 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) ) + I 4 I 3 = 0 \left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0 ( z ~ 2 λ 3 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) ) + I 3 I 4 = 0 x ~ 2 + y ~ 2 ( 3 − 5 ) + z ~ 2 ( 5 + 3 ) + 2 = 0 \tilde x^{2} + \tilde y^{2} \left(3 - \sqrt{5}\right) + \tilde z^{2} \left(\sqrt{5} + 3\right) + 2 = 0 x ~ 2 + y ~ 2 ( 3 − 5 ) + z ~ 2 ( 5 + 3 ) + 2 = 0 z ~ 2 ( 1 2 2 5 + 3 ) 2 + ( x ~ 2 ( 1 1 2 2 ) 2 + y ~ 2 ( 1 2 2 3 − 5 ) 2 ) = − 1 \frac{\tilde z^{2}}{\left(\frac{1}{\frac{\sqrt{2}}{2} \sqrt{\sqrt{5} + 3}}\right)^{2}} + \left(\frac{\tilde x^{2}}{\left(\frac{1}{\frac{1}{2} \sqrt{2}}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{1}{\frac{\sqrt{2}}{2} \sqrt{3 - \sqrt{5}}}\right)^{2}}\right) = -1 ( 2 2 5 + 3 1 ) 2 z ~ 2 + ( 2 1 2 1 ) 2 x ~ 2 + ( 2 2 3 − 5 1 ) 2 y ~ 2 = − 1 this equation is fora type imaginary ellipsoid - reduced to canonical form