Mister Exam

Other calculators


9^n*factorial(n)/n^(n*2)

Sum of series 9^n*factorial(n)/n^(n*2)



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \     n   
  \   9 *n!
   )  -----
  /     n*2
 /     n   
/___,      
n = 1      
$$\sum_{n=1}^{\infty} \frac{9^{n} n!}{n^{2 n}}$$
Sum((9^n*factorial(n))/n^(n*2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{9^{n} n!}{n^{2 n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = n^{- 2 n} n!$$
and
$$x_{0} = -9$$
,
$$d = 1$$
,
$$c = 0$$
then
$$R = \tilde{\infty} \left(-9 + \lim_{n \to \infty}\left(n^{- 2 n} \left(n + 1\right)^{2 n + 2} \left|{\frac{n!}{\left(n + 1\right)!}}\right|\right)\right)$$
Let's take the limit
we find
$$R = \infty$$
The rate of convergence of the power series
The answer [src]
  oo             
 ___             
 \  `            
  \    n  -2*n   
  /   9 *n    *n!
 /__,            
n = 1            
$$\sum_{n=1}^{\infty} 9^{n} n^{- 2 n} n!$$
Sum(9^n*n^(-2*n)*factorial(n), (n, 1, oo))
Numerical answer [src]
28.4718751531196540595858172056
28.4718751531196540595858172056
The graph
Sum of series 9^n*factorial(n)/n^(n*2)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: