Mister Exam

# Factor -5*b^2-2*b+1 squared

An expression to simplify:

### The solution

You have entered [src]
     2
- 5*b  - 2*b + 1
$$\left(- 5 b^{2} - 2 b\right) + 1$$
-5*b^2 - 2*b + 1
Factorization [src]
/          ___\ /          ___\
|    1   \/ 6 | |    1   \/ 6 |
|b + - - -----|*|b + - + -----|
\    5     5  / \    5     5  /
$$\left(b + \left(\frac{1}{5} - \frac{\sqrt{6}}{5}\right)\right) \left(b + \left(\frac{1}{5} + \frac{\sqrt{6}}{5}\right)\right)$$
(b + 1/5 - sqrt(6)/5)*(b + 1/5 + sqrt(6)/5)
General simplification [src]
       2
1 - 5*b  - 2*b
$$- 5 b^{2} - 2 b + 1$$
1 - 5*b^2 - 2*b
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- 5 b^{2} - 2 b\right) + 1$$
To do this, let's use the formula
$$a b^{2} + b^{2} + c = a \left(b + m\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -5$$
$$b = -2$$
$$c = 1$$
Then
$$m = \frac{1}{5}$$
$$n = \frac{6}{5}$$
So,
$$\frac{6}{5} - 5 \left(b + \frac{1}{5}\right)^{2}$$
Trigonometric part [src]
       2
1 - 5*b  - 2*b
$$- 5 b^{2} - 2 b + 1$$
1 - 5*b^2 - 2*b
1.0 - 2.0*b - 5.0*b^2
1.0 - 2.0*b - 5.0*b^2
Assemble expression [src]
       2
1 - 5*b  - 2*b
$$- 5 b^{2} - 2 b + 1$$
1 - 5*b^2 - 2*b
Rational denominator [src]
       2
1 - 5*b  - 2*b
$$- 5 b^{2} - 2 b + 1$$
1 - 5*b^2 - 2*b
Common denominator [src]
       2
1 - 5*b  - 2*b
$$- 5 b^{2} - 2 b + 1$$
1 - 5*b^2 - 2*b
Powers [src]
       2
1 - 5*b  - 2*b
$$- 5 b^{2} - 2 b + 1$$
1 - 5*b^2 - 2*b
Combinatorics [src]
       2
1 - 5*b  - 2*b
$$- 5 b^{2} - 2 b + 1$$
1 - 5*b^2 - 2*b
Combining rational expressions [src]
1 + b*(-2 - 5*b)
$$b \left(- 5 b - 2\right) + 1$$
1 + b*(-2 - 5*b)
To see a detailed solution - share to all your student friends
To see a detailed solution,
share to all your student friends: