Let's highlight the perfect square of the square three-member $$\left(- 5 b^{2} - 2 b\right) + 1$$ To do this, let's use the formula $$a b^{2} + b^{2} + c = a \left(b + m\right)^{2} + n$$ where $$m = \frac{b}{2 a}$$ $$n = \frac{4 a c - b^{2}}{4 a}$$ In this case $$a = -5$$ $$b = -2$$ $$c = 1$$ Then $$m = \frac{1}{5}$$ $$n = \frac{6}{5}$$ So, $$\frac{6}{5} - 5 \left(b + \frac{1}{5}\right)^{2}$$