Let's highlight the perfect square of the square three-member $$\left(- 9 p^{2} - 5 p\right) - 4$$ To do this, let's use the formula $$a p^{2} + b p + c = a \left(m + p\right)^{2} + n$$ where $$m = \frac{b}{2 a}$$ $$n = \frac{4 a c - b^{2}}{4 a}$$ In this case $$a = -9$$ $$b = -5$$ $$c = -4$$ Then $$m = \frac{5}{18}$$ $$n = - \frac{119}{36}$$ So, $$- 9 \left(p + \frac{5}{18}\right)^{2} - \frac{119}{36}$$