Mister Exam

# How do you (a^-2-a/a^-1-1)/(a^2+1) in partial fractions?

An expression to simplify:

### The solution

You have entered [src]
1     a
-- - --- - 1
2   /1\
a    |-|
\a/
------------
2
a  + 1   
$$\frac{\left(\frac{1}{a^{2}} - \frac{a}{\frac{1}{a}}\right) - 1}{a^{2} + 1}$$
(a^(-2) - a/1/a - 1)/(a^2 + 1)
Fraction decomposition [src]
-1 + a^(-2) - 1/(1 + a^2)
$$-1 - \frac{1}{a^{2} + 1} + \frac{1}{a^{2}}$$
     1      1
-1 + -- - ------
2        2
a    1 + a 
General simplification [src]
     2    4
1 - a  - a
-----------
2 /     2\
a *\1 + a /
$$\frac{- a^{4} - a^{2} + 1}{a^{2} \left(a^{2} + 1\right)}$$
(1 - a^2 - a^4)/(a^2*(1 + a^2))
Rational denominator [src]
     2    4
1 - a  - a
-----------
2 /     2\
a *\1 + a /
$$\frac{- a^{4} - a^{2} + 1}{a^{2} \left(a^{2} + 1\right)}$$
(1 - a^2 - a^4)/(a^2*(1 + a^2))
(-1.0 + a^(-2) - a^2)/(1.0 + a^2)
(-1.0 + a^(-2) - a^2)/(1.0 + a^2)
Combining rational expressions [src]
     2    4
1 - a  - a
-----------
2 /     2\
a *\1 + a /
$$\frac{- a^{4} - a^{2} + 1}{a^{2} \left(a^{2} + 1\right)}$$
(1 - a^2 - a^4)/(a^2*(1 + a^2))
Combinatorics [src]
 /      2    4\
-\-1 + a  + a /
----------------
2 /     2\
a *\1 + a /   
$$- \frac{a^{4} + a^{2} - 1}{a^{2} \left(a^{2} + 1\right)}$$
-(-1 + a^2 + a^4)/(a^2*(1 + a^2))
Powers [src]
     1     2
-1 + -- - a
2
a
------------
2
1 + a    
$$\frac{- a^{2} - 1 + \frac{1}{a^{2}}}{a^{2} + 1}$$
(-1 + a^(-2) - a^2)/(1 + a^2)
Common denominator [src]
        1
-1 + -------
2    4
a  + a 
$$-1 + \frac{1}{a^{4} + a^{2}}$$
-1 + 1/(a^2 + a^4)
Trigonometric part [src]
     1     2
-1 + -- - a
2
a
------------
2
1 + a    
$$\frac{- a^{2} - 1 + \frac{1}{a^{2}}}{a^{2} + 1}$$
(-1 + a^(-2) - a^2)/(1 + a^2)
Assemble expression [src]
     1     2
-1 + -- - a
2
a
------------
2
1 + a    
$$\frac{- a^{2} - 1 + \frac{1}{a^{2}}}{a^{2} + 1}$$
(-1 + a^(-2) - a^2)/(1 + a^2)
To see a detailed solution - share to all your student friends
To see a detailed solution,
share to all your student friends: