Mister Exam

# How do you (4x^2+40x−156)/(4x-12) in partial fractions?

An expression to simplify:

### The solution

You have entered [src]
   2
4*x  + 40*x - 156
-----------------
4*x - 12    
$$\frac{\left(4 x^{2} + 40 x\right) - 156}{4 x - 12}$$
(4*x^2 + 40*x - 156)/(4*x - 12)
Fraction decomposition [src]
13 + x
$$x + 13$$
13 + x
General simplification [src]
13 + x
$$x + 13$$
13 + x
(-156.0 + 4.0*x^2 + 40.0*x)/(-12.0 + 4.0*x)
(-156.0 + 4.0*x^2 + 40.0*x)/(-12.0 + 4.0*x)
Trigonometric part [src]
          2
-156 + 4*x  + 40*x
------------------
-12 + 4*x     
$$\frac{4 x^{2} + 40 x - 156}{4 x - 12}$$
(-156 + 4*x^2 + 40*x)/(-12 + 4*x)
Rational denominator [src]
          2
-156 + 4*x  + 40*x
------------------
-12 + 4*x     
$$\frac{4 x^{2} + 40 x - 156}{4 x - 12}$$
(-156 + 4*x^2 + 40*x)/(-12 + 4*x)
Combinatorics [src]
13 + x
$$x + 13$$
13 + x
Combining rational expressions [src]
-39 + x*(10 + x)
----------------
-3 + x     
$$\frac{x \left(x + 10\right) - 39}{x - 3}$$
(-39 + x*(10 + x))/(-3 + x)
Assemble expression [src]
          2
-156 + 4*x  + 40*x
------------------
-12 + 4*x     
$$\frac{4 x^{2} + 40 x - 156}{4 x - 12}$$
(-156 + 4*x^2 + 40*x)/(-12 + 4*x)
Powers [src]
          2
-156 + 4*x  + 40*x
------------------
-12 + 4*x     
$$\frac{4 x^{2} + 40 x - 156}{4 x - 12}$$
(-156 + 4*x^2 + 40*x)/(-12 + 4*x)
Common denominator [src]
13 + x
$$x + 13$$
13 + x
To see a detailed solution - share to all your student friends
To see a detailed solution,
share to all your student friends: