Mister Exam

# How do you (x^2+2x-15)/(x+5) in partial fractions?

An expression to simplify:

### The solution

You have entered [src]
 2
x  + 2*x - 15
-------------
x + 5    
$$\frac{\left(x^{2} + 2 x\right) - 15}{x + 5}$$
(x^2 + 2*x - 15)/(x + 5)
Fraction decomposition [src]
-3 + x
$$x - 3$$
-3 + x
General simplification [src]
-3 + x
$$x - 3$$
-3 + x
Common denominator [src]
-3 + x
$$x - 3$$
-3 + x
Assemble expression [src]
       2
-15 + x  + 2*x
--------------
5 + x     
$$\frac{x^{2} + 2 x - 15}{x + 5}$$
(-15 + x^2 + 2*x)/(5 + x)
Trigonometric part [src]
       2
-15 + x  + 2*x
--------------
5 + x     
$$\frac{x^{2} + 2 x - 15}{x + 5}$$
(-15 + x^2 + 2*x)/(5 + x)
Combining rational expressions [src]
-15 + x*(2 + x)
---------------
5 + x     
$$\frac{x \left(x + 2\right) - 15}{x + 5}$$
(-15 + x*(2 + x))/(5 + x)
Powers [src]
       2
-15 + x  + 2*x
--------------
5 + x     
$$\frac{x^{2} + 2 x - 15}{x + 5}$$
(-15 + x^2 + 2*x)/(5 + x)
Combinatorics [src]
-3 + x
$$x - 3$$
-3 + x
Rational denominator [src]
       2
-15 + x  + 2*x
--------------
5 + x     
$$\frac{x^{2} + 2 x - 15}{x + 5}$$
(-15 + x^2 + 2*x)/(5 + x)
(-15.0 + x^2 + 2.0*x)/(5.0 + x)
(-15.0 + x^2 + 2.0*x)/(5.0 + x)