Mister Exam

Other calculators

How do you ((p+3)/(p^2-2p))*((4p-8)/(p+3)) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
 p + 3   4*p - 8
--------*-------
 2        p + 3 
p  - 2*p        
$$\frac{4 p - 8}{p + 3} \frac{p + 3}{p^{2} - 2 p}$$
((p + 3)/(p^2 - 2*p))*((4*p - 8)/(p + 3))
Fraction decomposition [src]
4/p
$$\frac{4}{p}$$
4
-
p
General simplification [src]
4
-
p
$$\frac{4}{p}$$
4/p
Trigonometric part [src]
-8 + 4*p
--------
 2      
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)
Combinatorics [src]
4
-
p
$$\frac{4}{p}$$
4/p
Rational denominator [src]
-8 + 4*p
--------
 2      
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)
Common denominator [src]
4
-
p
$$\frac{4}{p}$$
4/p
Combining rational expressions [src]
4
-
p
$$\frac{4}{p}$$
4/p
Powers [src]
-8 + 4*p
--------
 2      
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)
Numerical answer [src]
(-8.0 + 4.0*p)/(p^2 - 2.0*p)
(-8.0 + 4.0*p)/(p^2 - 2.0*p)
Assemble expression [src]
-8 + 4*p
--------
 2      
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: