Mister Exam

# How do you ((p+3)/(p^2-2p))*((4p-8)/(p+3)) in partial fractions?

An expression to simplify:

### The solution

You have entered [src]
 p + 3   4*p - 8
--------*-------
2        p + 3
p  - 2*p        
$$\frac{4 p - 8}{p + 3} \frac{p + 3}{p^{2} - 2 p}$$
((p + 3)/(p^2 - 2*p))*((4*p - 8)/(p + 3))
Fraction decomposition [src]
4/p
$$\frac{4}{p}$$
4
-
p
General simplification [src]
4
-
p
$$\frac{4}{p}$$
4/p
Trigonometric part [src]
-8 + 4*p
--------
2
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)
Combinatorics [src]
4
-
p
$$\frac{4}{p}$$
4/p
Rational denominator [src]
-8 + 4*p
--------
2
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)
Common denominator [src]
4
-
p
$$\frac{4}{p}$$
4/p
Combining rational expressions [src]
4
-
p
$$\frac{4}{p}$$
4/p
Powers [src]
-8 + 4*p
--------
2
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)
(-8.0 + 4.0*p)/(p^2 - 2.0*p)
(-8.0 + 4.0*p)/(p^2 - 2.0*p)
-8 + 4*p
p  - 2*p
$$\frac{4 p - 8}{p^{2} - 2 p}$$
(-8 + 4*p)/(p^2 - 2*p)