Mister Exam

# How do you (6x^2+29x)/(x+5) in partial fractions?

An expression to simplify:

### The solution

You have entered [src]
   2
6*x  + 29*x
-----------
x + 5   
$$\frac{6 x^{2} + 29 x}{x + 5}$$
(6*x^2 + 29*x)/(x + 5)
Fraction decomposition [src]
-1 + 5/(5 + x) + 6*x
$$6 x - 1 + \frac{5}{x + 5}$$
       5
-1 + ----- + 6*x
5 + x      
General simplification [src]
x*(29 + 6*x)
------------
5 + x    
$$\frac{x \left(6 x + 29\right)}{x + 5}$$
x*(29 + 6*x)/(5 + x)
(6.0*x^2 + 29.0*x)/(5.0 + x)
(6.0*x^2 + 29.0*x)/(5.0 + x)
Combining rational expressions [src]
x*(29 + 6*x)
------------
5 + x    
$$\frac{x \left(6 x + 29\right)}{x + 5}$$
x*(29 + 6*x)/(5 + x)
Combinatorics [src]
x*(29 + 6*x)
------------
5 + x    
$$\frac{x \left(6 x + 29\right)}{x + 5}$$
x*(29 + 6*x)/(5 + x)
Common denominator [src]
       5
-1 + ----- + 6*x
5 + x      
$$6 x - 1 + \frac{5}{x + 5}$$
-1 + 5/(5 + x) + 6*x
To see a detailed solution - share to all your student friends
To see a detailed solution,
share to all your student friends: