Mister Exam

# Least common denominator (y/x-y+x/x+y)/(1/x2/y2)

An expression to simplify:

### The solution

You have entered [src]
y       x
- - y + - + y
x       x
-------------
/  1  \
|-----|
\x2*y2/   
$$\frac{y + \left(\left(- y + \frac{y}{x}\right) + \frac{x}{x}\right)}{\frac{1}{x_{2}} \frac{1}{y_{2}}}$$
(y/x - y + x/x + y)/((1/(x2*y2)))
General simplification [src]
x2*y2*(x + y)
-------------
x      
$$\frac{x_{2} y_{2} \left(x + y\right)}{x}$$
x2*y2*(x + y)/x
Rational denominator [src]
x2*y2*(x + y)
-------------
x      
$$\frac{x_{2} y_{2} \left(x + y\right)}{x}$$
x2*y2*(x + y)/x
Trigonometric part [src]
      /    y\
x2*y2*|1 + -|
\    x/
$$x_{2} y_{2} \left(1 + \frac{y}{x}\right)$$
x2*y2*(1 + y/x)
x2*y2*(1 + y/x)
x2*y2*(1 + y/x)
Expand expression [src]
      /y       x    \
x2*y2*|- - y + - + y|
\x       x    /
$$x_{2} y_{2} \left(y + \left(\left(- y + \frac{y}{x}\right) + \frac{x}{x}\right)\right)$$
x2*y2*(y/x - y + x/x + y)
Assemble expression [src]
      /    y\
x2*y2*|1 + -|
\    x/
$$x_{2} y_{2} \left(1 + \frac{y}{x}\right)$$
x2*y2*(1 + y/x)
Combinatorics [src]
x2*y2*(x + y)
-------------
x      
$$\frac{x_{2} y_{2} \left(x + y\right)}{x}$$
x2*y2*(x + y)/x
Combining rational expressions [src]
x2*y2*(x + x*y + y*(1 - x))
---------------------------
x             
$$\frac{x_{2} y_{2} \left(x y + x + y \left(1 - x\right)\right)}{x}$$
x2*y2*(x + x*y + y*(1 - x))/x
Common denominator [src]
        x2*y*y2
x2*y2 + -------
x   
$$x_{2} y_{2} + \frac{x_{2} y y_{2}}{x}$$
x2*y2 + x2*y*y2/x
Powers [src]
      /    y\
x2*y2*|1 + -|
\    x/
$$x_{2} y_{2} \left(1 + \frac{y}{x}\right)$$
x2*y2*(1 + y/x)
To see a detailed solution - share to all your student friends
To see a detailed solution,
share to all your student friends: