Mister Exam

Other calculators:


(1+n)/|-1+n|

Limit of the function (1+n)/|-1+n|

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 1 + n  \
 lim |--------|
n->oo\|-1 + n|/
$$\lim_{n \to \infty}\left(\frac{n + 1}{\left|{n - 1}\right|}\right)$$
Limit((1 + n)/|-1 + n|, n, oo, dir='-')
The graph
Rapid solution [src]
1
$$1$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{n + 1}{\left|{n - 1}\right|}\right) = 1$$
$$\lim_{n \to 0^-}\left(\frac{n + 1}{\left|{n - 1}\right|}\right) = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{n + 1}{\left|{n - 1}\right|}\right) = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{n + 1}{\left|{n - 1}\right|}\right) = \infty$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{n + 1}{\left|{n - 1}\right|}\right) = \infty$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{n + 1}{\left|{n - 1}\right|}\right) = -1$$
More at n→-oo
The graph
Limit of the function (1+n)/|-1+n|