$$\lim_{x \to \infty} \cosh{\left(\frac{1}{x} \right)} = 1$$ $$\lim_{x \to 0^-} \cosh{\left(\frac{1}{x} \right)} = \infty$$ More at x→0 from the left $$\lim_{x \to 0^+} \cosh{\left(\frac{1}{x} \right)} = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-} \cosh{\left(\frac{1}{x} \right)} = \frac{1 + e^{2}}{2 e}$$ More at x→1 from the left $$\lim_{x \to 1^+} \cosh{\left(\frac{1}{x} \right)} = \frac{1 + e^{2}}{2 e}$$ More at x→1 from the right $$\lim_{x \to -\infty} \cosh{\left(\frac{1}{x} \right)} = 1$$ More at x→-oo
The graph
To see a detailed solution - share to all your student friends
To see a detailed solution, share to all your student friends: