Mister Exam

Other calculators:

Limit of the function (-1+(1+x)^a)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /            a\
     |-1 + (1 + x) |
 lim |-------------|
x->0+\      x      /
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right)$$
Limit((-1 + (1 + x)^a)/x, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(\left(x + 1\right)^{a} - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right)$$
=
$$a$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 0 time(s)
One‐sided limits [src]
     /            a\
     |-1 + (1 + x) |
 lim |-------------|
x->0+\      x      /
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right)$$
a
$$a$$
     /            a\
     |-1 + (1 + x) |
 lim |-------------|
x->0-\      x      /
$$\lim_{x \to 0^-}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right)$$
a
$$a$$
a
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right) = a$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right) = a$$
$$\lim_{x \to \infty}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right) = 2^{a} - 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right) = 2^{a} - 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\left(x + 1\right)^{a} - 1}{x}\right)$$
More at x→-oo
Rapid solution [src]
a
$$a$$