Mister Exam

Other calculators:


((1+x)^2-sqrt(1+4*x))/(-e^(x^2)+cos(x))

Limit of the function ((1+x)^2-sqrt(1+4*x))/(-e^(x^2)+cos(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2     _________\
     |(1 + x)  - \/ 1 + 4*x |
 lim |----------------------|
x->0+|      / 2\            |
     |      \x /            |
     \   - E     + cos(x)   /
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right)$$
Limit(((1 + x)^2 - sqrt(1 + 4*x))/(-E^(x^2) + cos(x)), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(x^{2} + 2 x - \sqrt{4 x + 1} + 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(- e^{x^{2}} + \cos{\left(x \right)}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(x^{2} + 2 x - \sqrt{4 x + 1} + 1\right)}{\frac{d}{d x} \left(- e^{x^{2}} + \cos{\left(x \right)}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 x + 2 - \frac{2}{\sqrt{4 x + 1}}}{- 2 x e^{x^{2}} - \sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(2 x + 2 - \frac{2}{\sqrt{4 x + 1}}\right)}{\frac{d}{d x} \left(- 2 x e^{x^{2}} - \sin{\left(x \right)}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 + \frac{4}{4 x \sqrt{4 x + 1} + \sqrt{4 x + 1}}}{- 4 x^{2} e^{x^{2}} - 2 e^{x^{2}} - \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 + \frac{4}{4 x \sqrt{4 x + 1} + \sqrt{4 x + 1}}}{- 4 x^{2} e^{x^{2}} - 2 e^{x^{2}} - \cos{\left(x \right)}}\right)$$
=
$$-2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
Rapid solution [src]
-2
$$-2$$
One‐sided limits [src]
     /       2     _________\
     |(1 + x)  - \/ 1 + 4*x |
 lim |----------------------|
x->0+|      / 2\            |
     |      \x /            |
     \   - E     + cos(x)   /
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right)$$
-2
$$-2$$
= -2.0
     /       2     _________\
     |(1 + x)  - \/ 1 + 4*x |
 lim |----------------------|
x->0-|      / 2\            |
     |      \x /            |
     \   - E     + cos(x)   /
$$\lim_{x \to 0^-}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right)$$
-2
$$-2$$
= -2.0
= -2.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right) = -2$$
$$\lim_{x \to \infty}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right) = \frac{-4 + \sqrt{5}}{e - \cos{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right) = \frac{-4 + \sqrt{5}}{e - \cos{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\left(x + 1\right)^{2} - \sqrt{4 x + 1}}{- e^{x^{2}} + \cos{\left(x \right)}}\right) = 0$$
More at x→-oo
Numerical answer [src]
-2.0
-2.0
The graph
Limit of the function ((1+x)^2-sqrt(1+4*x))/(-e^(x^2)+cos(x))