Mister exam

Other calculators:


(-1-sqrt(5)+sqrt(2)*sqrt(x))/(-3+x)

Limit of the function (-1-sqrt(5)+sqrt(2)*sqrt(x))/(-3+x)

at

For end points:

The graph:

from to

Enter:

The solution

You have entered [src]
     /       ___     ___   ___\
     |-1 - \/ 5  + \/ 2 *\/ x |
 lim |------------------------|
x->3+\         -3 + x         /
$$\lim_{x \to 3^+}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right)$$
Limit((-1 - sqrt(5) + sqrt(2)*sqrt(x))/(-3 + x), x, 3)
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
     /       ___     ___   ___\
     |-1 - \/ 5  + \/ 2 *\/ x |
 lim |------------------------|
x->3+\         -3 + x         /
$$\lim_{x \to 3^+}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right)$$
-oo
$$-\infty$$
= -118.365290205997
     /       ___     ___   ___\
     |-1 - \/ 5  + \/ 2 *\/ x |
 lim |------------------------|
x->3-\         -3 + x         /
$$\lim_{x \to 3^-}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right)$$
oo
$$\infty$$
= 119.181787284283
= 119.181787284283
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = -\infty$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = \frac{1}{3} + \frac{\sqrt{5}}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = \frac{1}{3} + \frac{\sqrt{5}}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = - \frac{\sqrt{2}}{2} + \frac{1}{2} + \frac{\sqrt{5}}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = - \frac{\sqrt{2}}{2} + \frac{1}{2} + \frac{\sqrt{5}}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sqrt{2} \sqrt{x} + \left(- \sqrt{5} - 1\right)}{x - 3}\right) = 0$$
More at x→-oo
Numerical answer [src]
-118.365290205997
-118.365290205997
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type

    The above examples also contain:

    • the modulus or absolute value: absolute(x) or |x|
    • square roots sqrt(x),
      cubic roots cbrt(x)
    • trigonometric functions:
      sinus sin(x), cosine cos(x), tangent tan(x), cotangent ctan(x)
    • exponential functions and exponents exp(x)
    • inverse trigonometric functions:
      arcsine asin(x), arccosine acos(x), arctangent atan(x), arccotangent acot(x)
    • natural logarithms ln(x),
      decimal logarithms log(x)
    • hyperbolic functions:
      hyperbolic sine sh(x), hyperbolic cosine ch(x), hyperbolic tangent and cotangent tanh(x), ctanh(x)
    • inverse hyperbolic functions:
      hyperbolic arcsine asinh(x), hyperbolic arccosinus acosh(x), hyperbolic arctangent atanh(x), hyperbolic arccotangent acoth(x)
    • other trigonometry and hyperbolic functions:
      secant sec(x), cosecant csc(x), arcsecant asec(x), arccosecant acsc(x), hyperbolic secant sech(x), hyperbolic cosecant csch(x), hyperbolic arcsecant asech(x), hyperbolic arccosecant acsch(x)
    • rounding functions:
      round down floor(x), round up ceiling(x)
    • the sign of a number:
      sign(x)
    • for probability theory:
      the error function erf(x) (integral of probability), Laplace function laplace(x)
    • Factorial of x:
      x! or factorial(x)
    • Gamma function gamma(x)
    • Lambert's function LambertW(x)

    The insertion rules

    The following operations can be performed

    2*x
    - multiplication
    3/x
    - division
    x^2
    - squaring
    x^3
    - cubing
    x^5
    - raising to the power
    x + 7
    - addition
    x - 6
    - subtraction
    Real numbers
    insert as 7.5, no 7,5

    Constants

    pi
    - number Pi
    e
    - the base of natural logarithm
    i
    - complex number
    oo
    - symbol of infinity
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: