Mister Exam

Other calculators:


z^3*sin(1/z)

Limit of the function z^3*sin(1/z)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3    /1\\
 lim |z *sin|-||
z->oo\      \z//
$$\lim_{z \to \infty}\left(z^{3} \sin{\left(\frac{1}{z} \right)}\right)$$
Limit(z^3*sin(1/z), z, oo, dir='-')
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits z→0, -oo, +oo, 1
$$\lim_{z \to \infty}\left(z^{3} \sin{\left(\frac{1}{z} \right)}\right) = \infty$$
$$\lim_{z \to 0^-}\left(z^{3} \sin{\left(\frac{1}{z} \right)}\right) = 0$$
More at z→0 from the left
$$\lim_{z \to 0^+}\left(z^{3} \sin{\left(\frac{1}{z} \right)}\right) = 0$$
More at z→0 from the right
$$\lim_{z \to 1^-}\left(z^{3} \sin{\left(\frac{1}{z} \right)}\right) = \sin{\left(1 \right)}$$
More at z→1 from the left
$$\lim_{z \to 1^+}\left(z^{3} \sin{\left(\frac{1}{z} \right)}\right) = \sin{\left(1 \right)}$$
More at z→1 from the right
$$\lim_{z \to -\infty}\left(z^{3} \sin{\left(\frac{1}{z} \right)}\right) = \infty$$
More at z→-oo
The graph
Limit of the function z^3*sin(1/z)