Mister Exam

Other calculators:


15+x^2-8*x

Limit of the function 15+x^2-8*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      2      \
 lim \15 + x  - 8*x/
x->5+               
$$\lim_{x \to 5^+}\left(x^{2} - 8 x + 15\right)$$
Limit(15 + x^2 - 8*x, x, 5)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 5^-}\left(x^{2} - 8 x + 15\right) = 0$$
More at x→5 from the left
$$\lim_{x \to 5^+}\left(x^{2} - 8 x + 15\right) = 0$$
$$\lim_{x \to \infty}\left(x^{2} - 8 x + 15\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x^{2} - 8 x + 15\right) = 15$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} - 8 x + 15\right) = 15$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} - 8 x + 15\right) = 8$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} - 8 x + 15\right) = 8$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} - 8 x + 15\right) = \infty$$
More at x→-oo
One‐sided limits [src]
     /      2      \
 lim \15 + x  - 8*x/
x->5+               
$$\lim_{x \to 5^+}\left(x^{2} - 8 x + 15\right)$$
0
$$0$$
= -7.97177948403636e-32
     /      2      \
 lim \15 + x  - 8*x/
x->5-               
$$\lim_{x \to 5^-}\left(x^{2} - 8 x + 15\right)$$
0
$$0$$
= -1.13943365149811e-31
= -1.13943365149811e-31
Numerical answer [src]
-7.97177948403636e-32
-7.97177948403636e-32
The graph
Limit of the function 15+x^2-8*x