Mister Exam

Other calculators

Integral of (sin(2021)x)/(pi*sin(x)) dx

Limits of integration:

from to

The graph:

from to

Enter:

The solution

You have entered [src]
 pi               
  /               
 |                
 |  sin(2021)*x   
 |  ----------- dx
 |   pi*sin(x)    
 |                
/                 
0                 
$$\int\limits_{0}^{\pi} \frac{x \sin{\left(2021 \right)}}{\pi \sin{\left(x \right)}}\, dx$$
Integral((sin(2021)*x)/((pi*sin(x))), (x, 0, pi))
The answer [src]
/ pi          \          
|  /          |          
| |           |          
| |    x      |          
| |  ------ dx|*sin(2021)
| |  sin(x)   |          
| |           |          
|/            |          
\0            /          
-------------------------
            pi           
$$\frac{\sin{\left(2021 \right)} \int\limits_{0}^{\pi} \frac{x}{\sin{\left(x \right)}}\, dx}{\pi}$$
=
=
/ pi          \          
|  /          |          
| |           |          
| |    x      |          
| |  ------ dx|*sin(2021)
| |  sin(x)   |          
| |           |          
|/            |          
\0            /          
-------------------------
            pi           
$$\frac{\sin{\left(2021 \right)} \int\limits_{0}^{\pi} \frac{x}{\sin{\left(x \right)}}\, dx}{\pi}$$
Integral(x/sin(x), (x, 0, pi))*sin(2021)/pi
Numerical answer [src]
-30.4929541152786
-30.4929541152786

    Use the examples entering the upper and lower limits of integration.

    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: