Mister Exam

Other calculators

Integral of sqrt(2*a*(1-cos(t)))*2*a*sin(t/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                   
  /                                   
 |                                    
 |    __________________        /t\   
 |  \/ 2*a*(1 - cos(t)) *2*a*sin|-| dt
 |                              \2/   
 |                                    
/                                     
0                                     
$$\int\limits_{0}^{1} a 2 \sqrt{2 a \left(1 - \cos{\left(t \right)}\right)} \sin{\left(\frac{t}{2} \right)}\, dt$$
Integral(((sqrt((2*a)*(1 - cos(t)))*2)*a)*sin(t/2), (t, 0, 1))
The answer (Indefinite) [src]
  /                                                     /                              
 |                                                     |                               
 |   __________________        /t\                ___  |   __________________    /t\   
 | \/ 2*a*(1 - cos(t)) *2*a*sin|-| dt = C + 2*a*\/ 2 * | \/ -a*(-1 + cos(t)) *sin|-| dt
 |                             \2/                     |                         \2/   
 |                                                     |                               
/                                                     /                                
$$\int a 2 \sqrt{2 a \left(1 - \cos{\left(t \right)}\right)} \sin{\left(\frac{t}{2} \right)}\, dt = C + 2 \sqrt{2} a \int \sqrt{- a \left(\cos{\left(t \right)} - 1\right)} \sin{\left(\frac{t}{2} \right)}\, dt$$

    Use the examples entering the upper and lower limits of integration.