Mister exam

Other calculators


sin^4xcos^4x

Integral sin^4xcos^4x dx

Limits of integration:

from to

The graph:

from to

Enter:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     4       4      
 |  sin (x)*cos (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx$$
Integral(sin(x)^4*cos(x)^4, (x, 0, 1))
The graph
The answer [src]
                           3          
 3    3*cos(2)*sin(2)   sin (2)*cos(2)
--- - --------------- - --------------
128         256              128      
$$- \frac{\sin^{3}{\left(2 \right)} \cos{\left(2 \right)}}{128} - \frac{3 \sin{\left(2 \right)} \cos{\left(2 \right)}}{256} + \frac{3}{128}$$
=
=
                           3          
 3    3*cos(2)*sin(2)   sin (2)*cos(2)
--- - --------------- - --------------
128         256              128      
$$- \frac{\sin^{3}{\left(2 \right)} \cos{\left(2 \right)}}{128} - \frac{3 \sin{\left(2 \right)} \cos{\left(2 \right)}}{256} + \frac{3}{128}$$
3/128 - 3*cos(2)*sin(2)/256 - sin(2)^3*cos(2)/128
Numerical answer [src]
0.0303161896573113
0.0303161896573113

    Use the examples entering the upper and lower limits of integration.

    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: