1 / | | / 2\ | |y y | | |- + --| dx | |x 2| | \ x / | / 0
Integral(y/x + y^2/x^2, (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | / 2\ | |y y | | |- + --| dx = nan | |x 2| | \ x / | /
/ 2\ 2 oo*sign\y / - y
=
/ 2\ 2 oo*sign\y / - y
oo*sign(y^2) - y^2
Use the examples entering the upper and lower limits of integration.