Mister Exam

Other calculators

Integral of (1/cos^2x-3x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /   1             \   
 |  |------- - 3*x + 4| dx
 |  |   2             |   
 |  \cos (x)          /   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\left(- 3 x + \frac{1}{\cos^{2}{\left(x \right)}}\right) + 4\right)\, dx$$
Integral(1/(cos(x)^2) - 3*x + 4, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. Don't know the steps in finding this integral.

        But the integral is

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                       2         
 | /   1             \                3*x    sin(x)
 | |------- - 3*x + 4| dx = C + 4*x - ---- + ------
 | |   2             |                 2     cos(x)
 | \cos (x)          /                             
 |                                                 
/                                                  
$$\int \left(\left(- 3 x + \frac{1}{\cos^{2}{\left(x \right)}}\right) + 4\right)\, dx = C - \frac{3 x^{2}}{2} + 4 x + \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The graph
The answer [src]
5   sin(1)
- + ------
2   cos(1)
$$\frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + \frac{5}{2}$$
=
=
5   sin(1)
- + ------
2   cos(1)
$$\frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}} + \frac{5}{2}$$
5/2 + sin(1)/cos(1)
Numerical answer [src]
4.0574077246549
4.0574077246549

    Use the examples entering the upper and lower limits of integration.