Mister Exam

Other calculators

Integral of (3x-2)/(2-3x+5x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     3*x - 2       
 |  -------------- dx
 |               2   
 |  2 - 3*x + 5*x    
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{3 x - 2}{5 x^{2} + \left(2 - 3 x\right)}\, dx$$
Integral((3*x - 2)/(2 - 3*x + 5*x^2), (x, 0, 1))
Detail solution
We have the integral:
  /                 
 |                  
 |    3*x - 2       
 | -------------- dx
 |              2   
 | 2 - 3*x + 5*x    
 |                  
/                   
Rewrite the integrand
                                               / -11 \            
                     5*2*x - 3                 |-----|            
                 3*--------------              |   31|            
                      2                        |10*--|            
   3*x - 2         5*x  - 3*x + 2              \   20/            
-------------- = ---------------- + ------------------------------
             2          10                                   2    
2 - 3*x + 5*x                       /      ____         ____\     
                                    |-10*\/ 31      3*\/ 31 |     
                                    |----------*x + --------|  + 1
                                    \    31            31   /     
or
  /                   
 |                    
 |    3*x - 2         
 | -------------- dx  
 |              2    =
 | 2 - 3*x + 5*x      
 |                    
/                     
  
       /                                                          
      |                                                           
      |               1                                           
  22* | ------------------------------ dx       /                 
      |                          2             |                  
      | /      ____         ____\              |   5*2*x - 3      
      | |-10*\/ 31      3*\/ 31 |           3* | -------------- dx
      | |----------*x + --------|  + 1         |    2             
      | \    31            31   /              | 5*x  - 3*x + 2   
      |                                        |                  
     /                                        /                   
- --------------------------------------- + ----------------------
                     31                               10          
In the integral
    /                 
   |                  
   |   5*2*x - 3      
3* | -------------- dx
   |    2             
   | 5*x  - 3*x + 2   
   |                  
  /                   
----------------------
          10          
do replacement
              2
u = -3*x + 5*x 
then
the integral =
    /                       
   |                        
   |   1                    
3* | ----- du               
   | 2 + u                  
   |                        
  /             3*log(2 + u)
------------- = ------------
      10             10     
do backward replacement
    /                                         
   |                                          
   |   5*2*x - 3                              
3* | -------------- dx                        
   |    2                                     
   | 5*x  - 3*x + 2                           
   |                          /             2\
  /                      3*log\2 - 3*x + 5*x /
---------------------- = ---------------------
          10                       10         
In the integral
      /                                 
     |                                  
     |               1                  
-22* | ------------------------------ dx
     |                          2       
     | /      ____         ____\        
     | |-10*\/ 31      3*\/ 31 |        
     | |----------*x + --------|  + 1   
     | \    31            31   /        
     |                                  
    /                                   
----------------------------------------
                   31                   
do replacement
        ____          ____
    3*\/ 31    10*x*\/ 31 
v = -------- - -----------
       31           31    
then
the integral =
      /                       
     |                        
     |   1                    
-22* | ------ dv              
     |      2                 
     | 1 + v                  
     |                        
    /              -22*atan(v)
---------------- = -----------
       31               31    
do backward replacement
      /                                                                             
     |                                                                              
     |               1                                                              
-22* | ------------------------------ dx                                            
     |                          2                                                   
     | /      ____         ____\                                                    
     | |-10*\/ 31      3*\/ 31 |                                                    
     | |----------*x + --------|  + 1                     /      ____          ____\
     | \    31            31   /                 ____     |  3*\/ 31    10*x*\/ 31 |
     |                                     -11*\/ 31 *atan|- -------- + -----------|
    /                                                     \     31           31    /
---------------------------------------- = -----------------------------------------
                   31                                         155                   
Solution is:
                                        /      ____          ____\
         /2    2   3*x\        ____     |  3*\/ 31    10*x*\/ 31 |
    3*log|- + x  - ---|   11*\/ 31 *atan|- -------- + -----------|
         \5         5 /                 \     31           31    /
C + ------------------- - ----------------------------------------
             10                             155                   
The answer (Indefinite) [src]
                                                                 /     ____            \
  /                                                     ____     |10*\/ 31 *(-3/10 + x)|
 |                              /             2\   11*\/ 31 *atan|---------------------|
 |    3*x - 2              3*log\2 - 3*x + 5*x /                 \          31         /
 | -------------- dx = C + --------------------- - -------------------------------------
 |              2                    10                             155                 
 | 2 - 3*x + 5*x                                                                        
 |                                                                                      
/                                                                                       
$$\int \frac{3 x - 2}{5 x^{2} + \left(2 - 3 x\right)}\, dx = C + \frac{3 \log{\left(5 x^{2} - 3 x + 2 \right)}}{10} - \frac{11 \sqrt{31} \operatorname{atan}{\left(\frac{10 \sqrt{31} \left(x - \frac{3}{10}\right)}{31} \right)}}{155}$$
The graph
The answer [src]
                                          /    ____\                 /    ____\
                                 ____     |3*\/ 31 |        ____     |7*\/ 31 |
                            11*\/ 31 *atan|--------|   11*\/ 31 *atan|--------|
  3*log(2/5)   3*log(4/5)                 \   31   /                 \   31   /
- ---------- + ---------- - ------------------------ - ------------------------
      10           10                 155                        155           
$$- \frac{11 \sqrt{31} \operatorname{atan}{\left(\frac{7 \sqrt{31}}{31} \right)}}{155} - \frac{11 \sqrt{31} \operatorname{atan}{\left(\frac{3 \sqrt{31}}{31} \right)}}{155} + \frac{3 \log{\left(\frac{4}{5} \right)}}{10} - \frac{3 \log{\left(\frac{2}{5} \right)}}{10}$$
=
=
                                          /    ____\                 /    ____\
                                 ____     |3*\/ 31 |        ____     |7*\/ 31 |
                            11*\/ 31 *atan|--------|   11*\/ 31 *atan|--------|
  3*log(2/5)   3*log(4/5)                 \   31   /                 \   31   /
- ---------- + ---------- - ------------------------ - ------------------------
      10           10                 155                        155           
$$- \frac{11 \sqrt{31} \operatorname{atan}{\left(\frac{7 \sqrt{31}}{31} \right)}}{155} - \frac{11 \sqrt{31} \operatorname{atan}{\left(\frac{3 \sqrt{31}}{31} \right)}}{155} + \frac{3 \log{\left(\frac{4}{5} \right)}}{10} - \frac{3 \log{\left(\frac{2}{5} \right)}}{10}$$
-3*log(2/5)/10 + 3*log(4/5)/10 - 11*sqrt(31)*atan(3*sqrt(31)/31)/155 - 11*sqrt(31)*atan(7*sqrt(31)/31)/155
Numerical answer [src]
-0.342508127460497
-0.342508127460497

    Use the examples entering the upper and lower limits of integration.