Mister Exam

Other calculators

Graphing y = (sqrt(cos(x))*cos(75x)+sqrt(abs(x))-0,7)*(4-x*x)^0.2,sqrt(9-x^2),-sqrt(9-x^2),-x

Function f()

The graph:

from to

Intersection points:

does show?

Enter:

The solution

You have entered [src]
                                                              ________      ________     
        /  ________               _____   7 \ 5 _________    /      2      /      2      
f(x) = (|\/ cos(x) *cos(75*x) + \/ |x|  - --|*\/ 4 - x*x , \/  9 - x  , -\/  9 - x  , -x)
        \                                 10/                                            
$$f{\left(x \right)} = \left( \sqrt[5]{- x x + 4} \left(\left(\sqrt{\cos{\left(x \right)}} \cos{\left(75 x \right)} + \sqrt{\left|{x}\right|}\right) - \frac{7}{10}\right), \ \sqrt{9 - x^{2}}, \ - \sqrt{9 - x^{2}}, \ - x\right)$$
f = ((-x*x + 4)^(1/5)*(sqrt(cos(x))*cos(75*x) + sqrt(|x|) - 7/10, sqrt(9 - x^2), -sqrt(9 - x^2), -x))
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left( \sqrt[5]{- x x + 4} \left(\left(\sqrt{\cos{\left(x \right)}} \cos{\left(75 x \right)} + \sqrt{\left|{x}\right|}\right) - \frac{7}{10}\right), \ \sqrt{9 - x^{2}}, \ - \sqrt{9 - x^{2}}, \ - x\right) = 0$$
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to ((-x*x + 4)^(1/5)*(sqrt(cos(x))*cos(75*x) + sqrt(|x|) - 7/10), sqrt(9 - x^2), -sqrt(9 - x^2), -x).
                                                       ________      ________     
 /  ________               _____   7 \ 5 _________    /      2      /      2      
(|\/ cos(0) *cos(75*0) + \/ |0|  - --|*\/ 4 - 0*0, \/  9 - 0 , -\/  9 - 0 , -0)
 \                                 10/                                            

The result:
$$f{\left(0 \right)} = \left( \frac{3 \cdot 2^{\frac{2}{5}}}{10}, \ 3, \ -3, \ 0\right)$$
The point:
(0, (3*2^(2/5)/10, 3, -3, 0))
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{d}{d x} \left( \sqrt[5]{- x x + 4} \left(\left(\sqrt{\cos{\left(x \right)}} \cos{\left(75 x \right)} + \sqrt{\left|{x}\right|}\right) - \frac{7}{10}\right), \ \sqrt{9 - x^{2}}, \ - \sqrt{9 - x^{2}}, \ - x\right) = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\frac{d^{2}}{d x^{2}} \left( \sqrt[5]{- x x + 4} \left(\left(\sqrt{\cos{\left(x \right)}} \cos{\left(75 x \right)} + \sqrt{\left|{x}\right|}\right) - \frac{7}{10}\right), \ \sqrt{9 - x^{2}}, \ - \sqrt{9 - x^{2}}, \ - x\right) = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
Limit on the left could not be calculated
$$\lim_{x \to -\infty} \left( \sqrt[5]{- x x + 4} \left(\left(\sqrt{\cos{\left(x \right)}} \cos{\left(75 x \right)} + \sqrt{\left|{x}\right|}\right) - \frac{7}{10}\right), \ \sqrt{9 - x^{2}}, \ - \sqrt{9 - x^{2}}, \ - x\right)$$
Limit on the right could not be calculated
$$\lim_{x \to \infty} \left( \sqrt[5]{- x x + 4} \left(\left(\sqrt{\cos{\left(x \right)}} \cos{\left(75 x \right)} + \sqrt{\left|{x}\right|}\right) - \frac{7}{10}\right), \ \sqrt{9 - x^{2}}, \ - \sqrt{9 - x^{2}}, \ - x\right)$$
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: