Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{1.11111111111111 x}{\left(x - 2\right)^{2.66666666666667}} - \frac{1.33333333333333}{\left(x - 2\right)^{1.66666666666667}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 12$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 2$$
$$\lim_{x \to 2^-}\left(\frac{1.11111111111111 x}{\left(x - 2\right)^{2.66666666666667}} - \frac{1.33333333333333}{\left(x - 2\right)^{1.66666666666667}}\right) = \infty \left(-0.5 - 0.866025403784439 i\right)$$
$$\lim_{x \to 2^+}\left(\frac{1.11111111111111 x}{\left(x - 2\right)^{2.66666666666667}} - \frac{1.33333333333333}{\left(x - 2\right)^{1.66666666666667}}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = 2$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, 12\right]$$
Convex at the intervals
$$\left[12, \infty\right)$$