(-cos(n) + two *sin(n)/n + two *cos(n)/n^ two)/n = zero
( minus co sinus of e of (n) plus 2 multiply by sinus of (n) divide by n plus 2 multiply by co sinus of e of (n) divide by n squared ) divide by n equally 0
( minus co sinus of e of (n) plus two multiply by sinus of (n) divide by n plus two multiply by co sinus of e of (n) divide by n to the power of two) divide by n equally zero
(-cos(n) + 2*sin(n)/n + 2*cos(n)/n2)/n = 0
-cosn + 2*sinn/n + 2*cosn/n2/n = 0
(-cos(n) + 2*sin(n)/n + 2*cos(n)/n²)/n = 0
(-cos(n) + 2*sin(n)/n + 2*cos(n)/n to the power of 2)/n = 0
(-cos(n) + 2sin(n)/n + 2cos(n)/n^2)/n = 0
(-cos(n) + 2sin(n)/n + 2cos(n)/n2)/n = 0
-cosn + 2sinn/n + 2cosn/n2/n = 0
-cosn + 2sinn/n + 2cosn/n^2/n = 0
(-cos(n) + 2*sin(n) divide by n + 2*cos(n) divide by n^2) divide by n = 0