Mister Exam

Other calculators

  • Identical expressions

  • ((tanh(x)^ two - one)*sinh(tanh(x)) + two *cosh(tanh(x))*tanh(x))*(tanh(x)^ two - one) = zero
  • (( hyperbolic tangent of gent of (x) squared minus 1) multiply by hyperbolic sinus of e of ( hyperbolic tangent of gent of (x)) plus 2 multiply by hyperbolic co sinus of e of ine of ( hyperbolic tangent of gent of (x)) multiply by hyperbolic tangent of gent of (x)) multiply by ( hyperbolic tangent of gent of (x) squared minus 1) equally 0
  • (( hyperbolic tangent of gent of (x) to the power of two minus one) multiply by hyperbolic sinus of e of ( hyperbolic tangent of gent of (x)) plus two multiply by hyperbolic co sinus of e of ine of ( hyperbolic tangent of gent of (x)) multiply by hyperbolic tangent of gent of (x)) multiply by ( hyperbolic tangent of gent of (x) to the power of two minus one) equally zero
  • ((tanh(x)2 - 1)*sinh(tanh(x)) + 2*cosh(tanh(x))*tanh(x))*(tanh(x)2 - 1) = 0
  • tanhx2 - 1*sinhtanhx + 2*coshtanhx*tanhx*tanhx2 - 1 = 0
  • ((tanh(x)² - 1)*sinh(tanh(x)) + 2*cosh(tanh(x))*tanh(x))*(tanh(x)² - 1) = 0
  • ((tanh(x) to the power of 2 - 1)*sinh(tanh(x)) + 2*cosh(tanh(x))*tanh(x))*(tanh(x) to the power of 2 - 1) = 0
  • ((tanh(x)^2 - 1)sinh(tanh(x)) + 2cosh(tanh(x))tanh(x))(tanh(x)^2 - 1) = 0
  • ((tanh(x)2 - 1)sinh(tanh(x)) + 2cosh(tanh(x))tanh(x))(tanh(x)2 - 1) = 0
  • tanhx2 - 1sinhtanhx + 2coshtanhxtanhxtanhx2 - 1 = 0
  • tanhx^2 - 1sinhtanhx + 2coshtanhxtanhxtanhx^2 - 1 = 0
  • Similar expressions

  • ((tanh(x)^2 - 1)*sinh(tanh(x)) + 2*cosh(tanh(x))*tanh(x))*(tanh(x)^2 + 1) = 0
  • ((tanh(x)^2 + 1)*sinh(tanh(x)) + 2*cosh(tanh(x))*tanh(x))*(tanh(x)^2 - 1) = 0
  • ((tanh(x)^2 - 1)*sinh(tanh(x)) - 2*cosh(tanh(x))*tanh(x))*(tanh(x)^2 - 1) = 0

((tanh(x)^2 - 1)*sinh(tanh(x)) + 2*cosh(tanh(x))*tanh(x))*(tanh(x)^2 - 1) = 0 equation

v

Numerical solution:

Do search numerical solution at [, ]