Express x in terms of y where -5*x+13*y=-3
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
-5*x+13*y = -3
Looking for similar summands in the left part:
-5*x + 13*y = -3
Move the summands with the other variables
from left part to right part, we given:
$$- 5 x = - 13 y - 3$$
Divide both parts of the equation by -5
x = -3 - 13*y / (-5)
We get the answer: x = 3/5 + 13*y/5
3 13*re(y) 13*I*im(y)
x1 = - + -------- + ----------
5 5 5
$$x_{1} = \frac{13 \operatorname{re}{\left(y\right)}}{5} + \frac{13 i \operatorname{im}{\left(y\right)}}{5} + \frac{3}{5}$$
x1 = 13*re(y)/5 + 13*i*im(y)/5 + 3/5