Mister Exam

Other calculators

x=(4*a^4+1*a^4-104)/4 equation

A equation with variable:

Numerical solution:

Do search numerical solution at
[, ]

The solution

You have entered [src]
       4    4      
    4*a  + a  - 104
x = ---------------
           4       
$$x = \frac{\left(a^{4} + 4 a^{4}\right) - 104}{4}$$
Detail solution
Given the linear equation:
x = (4*a^4+1*a^4-104)/4

Expand brackets in the right part
x = 4*a/4+4/4+1*a/4+4/4-104/4

Looking for similar summands in the right part:
x = -26 + 5*a^4/4

We get the answer: x = -26 + 5*a^4/4
The graph
Rapid solution [src]
               4          4                                                   2      2   
           5*im (a)   5*re (a)     /      3                3         \   15*im (a)*re (a)
x1 = -26 + -------- + -------- + I*\- 5*im (a)*re(a) + 5*re (a)*im(a)/ - ----------------
              4          4                                                      2        
$$x_{1} = i \left(5 \left(\operatorname{re}{\left(a\right)}\right)^{3} \operatorname{im}{\left(a\right)} - 5 \operatorname{re}{\left(a\right)} \left(\operatorname{im}{\left(a\right)}\right)^{3}\right) + \frac{5 \left(\operatorname{re}{\left(a\right)}\right)^{4}}{4} - \frac{15 \left(\operatorname{re}{\left(a\right)}\right)^{2} \left(\operatorname{im}{\left(a\right)}\right)^{2}}{2} + \frac{5 \left(\operatorname{im}{\left(a\right)}\right)^{4}}{4} - 26$$
x1 = i*(5*re(a)^3*im(a) - 5*re(a)*im(a)^3) + 5*re(a)^4/4 - 15*re(a)^2*im(a)^2/2 + 5*im(a)^4/4 - 26
Sum and product of roots [src]
sum
          4          4                                                   2      2   
      5*im (a)   5*re (a)     /      3                3         \   15*im (a)*re (a)
-26 + -------- + -------- + I*\- 5*im (a)*re(a) + 5*re (a)*im(a)/ - ----------------
         4          4                                                      2        
$$i \left(5 \left(\operatorname{re}{\left(a\right)}\right)^{3} \operatorname{im}{\left(a\right)} - 5 \operatorname{re}{\left(a\right)} \left(\operatorname{im}{\left(a\right)}\right)^{3}\right) + \frac{5 \left(\operatorname{re}{\left(a\right)}\right)^{4}}{4} - \frac{15 \left(\operatorname{re}{\left(a\right)}\right)^{2} \left(\operatorname{im}{\left(a\right)}\right)^{2}}{2} + \frac{5 \left(\operatorname{im}{\left(a\right)}\right)^{4}}{4} - 26$$
=
          4          4                                                   2      2   
      5*im (a)   5*re (a)     /      3                3         \   15*im (a)*re (a)
-26 + -------- + -------- + I*\- 5*im (a)*re(a) + 5*re (a)*im(a)/ - ----------------
         4          4                                                      2        
$$i \left(5 \left(\operatorname{re}{\left(a\right)}\right)^{3} \operatorname{im}{\left(a\right)} - 5 \operatorname{re}{\left(a\right)} \left(\operatorname{im}{\left(a\right)}\right)^{3}\right) + \frac{5 \left(\operatorname{re}{\left(a\right)}\right)^{4}}{4} - \frac{15 \left(\operatorname{re}{\left(a\right)}\right)^{2} \left(\operatorname{im}{\left(a\right)}\right)^{2}}{2} + \frac{5 \left(\operatorname{im}{\left(a\right)}\right)^{4}}{4} - 26$$
product
          4          4                                                   2      2   
      5*im (a)   5*re (a)     /      3                3         \   15*im (a)*re (a)
-26 + -------- + -------- + I*\- 5*im (a)*re(a) + 5*re (a)*im(a)/ - ----------------
         4          4                                                      2        
$$i \left(5 \left(\operatorname{re}{\left(a\right)}\right)^{3} \operatorname{im}{\left(a\right)} - 5 \operatorname{re}{\left(a\right)} \left(\operatorname{im}{\left(a\right)}\right)^{3}\right) + \frac{5 \left(\operatorname{re}{\left(a\right)}\right)^{4}}{4} - \frac{15 \left(\operatorname{re}{\left(a\right)}\right)^{2} \left(\operatorname{im}{\left(a\right)}\right)^{2}}{2} + \frac{5 \left(\operatorname{im}{\left(a\right)}\right)^{4}}{4} - 26$$
=
          4          4           2      2                                       
      5*im (a)   5*re (a)   15*im (a)*re (a)       /  2        2   \            
-26 + -------- + -------- - ---------------- + 5*I*\re (a) - im (a)/*im(a)*re(a)
         4          4              2                                            
$$5 i \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} - \left(\operatorname{im}{\left(a\right)}\right)^{2}\right) \operatorname{re}{\left(a\right)} \operatorname{im}{\left(a\right)} + \frac{5 \left(\operatorname{re}{\left(a\right)}\right)^{4}}{4} - \frac{15 \left(\operatorname{re}{\left(a\right)}\right)^{2} \left(\operatorname{im}{\left(a\right)}\right)^{2}}{2} + \frac{5 \left(\operatorname{im}{\left(a\right)}\right)^{4}}{4} - 26$$
-26 + 5*im(a)^4/4 + 5*re(a)^4/4 - 15*im(a)^2*re(a)^2/2 + 5*i*(re(a)^2 - im(a)^2)*im(a)*re(a)
    To see a detailed solution - share to all your student friends
    To see a detailed solution,
    share to all your student friends: