Expand the expression in the equation
$$\frac{\left(6237 x^{2} + 411 x\right) + 250}{6237} = 0$$
We get the quadratic equation
$$x^{2} + \frac{137 x}{2079} + \frac{250}{6237} = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = \frac{137}{2079}$$
$$c = \frac{250}{6237}$$
, then
D = b^2 - 4 * a * c =
(137/2079)^2 - 4 * (1) * (250/6237) = -674231/4322241
Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = - \frac{137}{4158} + \frac{\sqrt{674231} i}{4158}$$
$$x_{2} = - \frac{137}{4158} - \frac{\sqrt{674231} i}{4158}$$