Given the equation
$$z^{5} + 32 = 0$$
Because equation degree is equal to = 5 - does not contain even numbers in the numerator, then
the equation has single real root.
Get the root 5-th degree of the equation sides:
We get:
$$\sqrt[5]{z^{5}} = \sqrt[5]{-32}$$
or
$$z = 2 \sqrt[5]{-1}$$
Expand brackets in the right part
z = -2*1^1/5
We get the answer: z = 2*(-1)^(1/5)
All other 4 root(s) is the complex numbers.
do replacement:
$$w = z$$
then the equation will be the:
$$w^{5} = -32$$
Any complex number can presented so:
$$w = r e^{i p}$$
substitute to the equation
$$r^{5} e^{5 i p} = -32$$
where
$$r = 2$$
- the magnitude of the complex number
Substitute r:
$$e^{5 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(5 p \right)} + \cos{\left(5 p \right)} = -1$$
so
$$\cos{\left(5 p \right)} = -1$$
and
$$\sin{\left(5 p \right)} = 0$$
then
$$p = \frac{2 \pi N}{5} + \frac{\pi}{5}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for w
Consequently, the solution will be for w:
$$w_{1} = -2$$
$$w_{2} = \frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
$$w_{3} = - \frac{\sqrt{5}}{2} + \frac{1}{2} - \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
$$w_{4} = \frac{1}{2} + 2 \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} - \frac{i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} - \frac{i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} + \frac{\sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2}$$
$$w_{5} = - 2 \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{1}{2} - \frac{i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} + \frac{i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} + \frac{\sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} + \frac{\sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2}$$
do backward replacement
$$w = z$$
$$z = w$$
The final answer:
$$z_{1} = -2$$
$$z_{2} = \frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
$$z_{3} = - \frac{\sqrt{5}}{2} + \frac{1}{2} - \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
$$z_{4} = \frac{1}{2} + 2 \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} - \frac{i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} - \frac{i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} + \frac{\sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2}$$
$$z_{5} = - 2 \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{1}{2} - \frac{i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} + \frac{i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} + \frac{\sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} + \frac{\sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2}$$