Mister Exam

Other calculators

z=y4sin5x+2x−2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
z = y4*sin(5*x) + 2*x - 2
$$z = \left(2 x + y_{4} \sin{\left(5 x \right)}\right) - 2$$
The graph
Rapid solution [src]
z1 = -2 + 2*re(x) + I*(2*im(x) + im(y4*sin(5*x))) + re(y4*sin(5*x))
$$z_{1} = i \left(2 \operatorname{im}{\left(x\right)} + \operatorname{im}{\left(y_{4} \sin{\left(5 x \right)}\right)}\right) + 2 \operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y_{4} \sin{\left(5 x \right)}\right)} - 2$$
z1 = i*(2*im(x) + im(y4*sin(5*x))) + 2*re(x) + re(y4*sin(5*x)) - 2
Sum and product of roots [src]
sum
-2 + 2*re(x) + I*(2*im(x) + im(y4*sin(5*x))) + re(y4*sin(5*x))
$$i \left(2 \operatorname{im}{\left(x\right)} + \operatorname{im}{\left(y_{4} \sin{\left(5 x \right)}\right)}\right) + 2 \operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y_{4} \sin{\left(5 x \right)}\right)} - 2$$
=
-2 + 2*re(x) + I*(2*im(x) + im(y4*sin(5*x))) + re(y4*sin(5*x))
$$i \left(2 \operatorname{im}{\left(x\right)} + \operatorname{im}{\left(y_{4} \sin{\left(5 x \right)}\right)}\right) + 2 \operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y_{4} \sin{\left(5 x \right)}\right)} - 2$$
product
-2 + 2*re(x) + I*(2*im(x) + im(y4*sin(5*x))) + re(y4*sin(5*x))
$$i \left(2 \operatorname{im}{\left(x\right)} + \operatorname{im}{\left(y_{4} \sin{\left(5 x \right)}\right)}\right) + 2 \operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y_{4} \sin{\left(5 x \right)}\right)} - 2$$
=
-2 + 2*re(x) + I*(2*im(x) + im(y4*sin(5*x))) + re(y4*sin(5*x))
$$i \left(2 \operatorname{im}{\left(x\right)} + \operatorname{im}{\left(y_{4} \sin{\left(5 x \right)}\right)}\right) + 2 \operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y_{4} \sin{\left(5 x \right)}\right)} - 2$$
-2 + 2*re(x) + i*(2*im(x) + im(y4*sin(5*x))) + re(y4*sin(5*x))