The teacher will be very surprised to see your correct solution 😉
/ y \
z = asin|------------|
| _________|
| / 2 2 |
\\/ x + y /
z = asiny/sqrt+x+2+y+2)
z = asin(y/sqrt(x^2 + y^2))
/ / y \\ / / y \\
z1 = I*im|asin|------------|| + re|asin|------------||
| | _________|| | | _________||
| | / 2 2 || | | / 2 2 ||
\ \\/ x + y // \ \\/ x + y //
z1 = re(asin(y/sqrt(x^2 + y^2))) + i*im(asin(y/sqrt(x^2 + y^2)))
sum
/ / y \\ / / y \\
I*im|asin|------------|| + re|asin|------------||
| | _________|| | | _________||
| | / 2 2 || | | / 2 2 ||
\ \\/ x + y // \ \\/ x + y //
=
/ / y \\ / / y \\
I*im|asin|------------|| + re|asin|------------||
| | _________|| | | _________||
| | / 2 2 || | | / 2 2 ||
\ \\/ x + y // \ \\/ x + y //
product
/ / y \\ / / y \\
I*im|asin|------------|| + re|asin|------------||
| | _________|| | | _________||
| | / 2 2 || | | / 2 2 ||
\ \\/ x + y // \ \\/ x + y //
=
/ / y \\ / / y \\
I*im|asin|------------|| + re|asin|------------||
| | _________|| | | _________||
| | / 2 2 || | | / 2 2 ||
\ \\/ x + y // \ \\/ x + y //
i*im(asin(y/sqrt(x^2 + y^2))) + re(asin(y/sqrt(x^2 + y^2)))