Mister Exam

Other calculators

z=arcsin(y/(sqrt(x^2+y^2))) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
        /     y      \
z = asin|------------|
        |   _________|
        |  /  2    2 |
        \\/  x  + y  /
$$z = \operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}$$
Detail solution
Given the equation:
$$z = \operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}$$
transform:
$$z = \operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}$$
Expand brackets in the right part
z = asiny/sqrt+x+2+y+2)

Looking for similar summands in the right part:
z = asin(y/sqrt(x^2 + y^2))

We get the answer: z = asin(y/sqrt(x^2 + y^2))
The graph
Rapid solution [src]
         /    /     y      \\     /    /     y      \\
z1 = I*im|asin|------------|| + re|asin|------------||
         |    |   _________||     |    |   _________||
         |    |  /  2    2 ||     |    |  /  2    2 ||
         \    \\/  x  + y  //     \    \\/  x  + y  //
$$z_{1} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)}$$
z1 = re(asin(y/sqrt(x^2 + y^2))) + i*im(asin(y/sqrt(x^2 + y^2)))
Sum and product of roots [src]
sum
    /    /     y      \\     /    /     y      \\
I*im|asin|------------|| + re|asin|------------||
    |    |   _________||     |    |   _________||
    |    |  /  2    2 ||     |    |  /  2    2 ||
    \    \\/  x  + y  //     \    \\/  x  + y  //
$$\operatorname{re}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)}$$
=
    /    /     y      \\     /    /     y      \\
I*im|asin|------------|| + re|asin|------------||
    |    |   _________||     |    |   _________||
    |    |  /  2    2 ||     |    |  /  2    2 ||
    \    \\/  x  + y  //     \    \\/  x  + y  //
$$\operatorname{re}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)}$$
product
    /    /     y      \\     /    /     y      \\
I*im|asin|------------|| + re|asin|------------||
    |    |   _________||     |    |   _________||
    |    |  /  2    2 ||     |    |  /  2    2 ||
    \    \\/  x  + y  //     \    \\/  x  + y  //
$$\operatorname{re}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)}$$
=
    /    /     y      \\     /    /     y      \\
I*im|asin|------------|| + re|asin|------------||
    |    |   _________||     |    |   _________||
    |    |  /  2    2 ||     |    |  /  2    2 ||
    \    \\/  x  + y  //     \    \\/  x  + y  //
$$\operatorname{re}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{y}{\sqrt{x^{2} + y^{2}}} \right)}\right)}$$
i*im(asin(y/sqrt(x^2 + y^2))) + re(asin(y/sqrt(x^2 + y^2)))