Mister Exam

Other calculators

z=arcsin^(3)((xy)/2) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
        3/x*y\
z = asin |---|
         \ 2 /
$$z = \operatorname{asin}^{3}{\left(\frac{x y}{2} \right)}$$
Detail solution
Given the equation:
$$z = \operatorname{asin}^{3}{\left(\frac{x y}{2} \right)}$$
transform:
$$z = \operatorname{asin}^{3}{\left(\frac{x y}{2} \right)}$$
Expand brackets in the right part
z = asinx*y/2^3

We get the answer: z = asin(x*y/2)^3
The graph
Rapid solution [src]
       3/    /x*y\\     /    3/    /x*y\\       2/    /x*y\\   /    /x*y\\\       2/    /x*y\\   /    /x*y\\
z1 = re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
        \    \ 2 //     \     \    \ 2 //        \    \ 2 //   \    \ 2 ///        \    \ 2 //   \    \ 2 //
$$z_{1} = i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
z1 = i*(3*re(asin(x*y/2))^2*im(asin(x*y/2)) - im(asin(x*y/2))^3) + re(asin(x*y/2))^3 - 3*re(asin(x*y/2))*im(asin(x*y/2))^2
Sum and product of roots [src]
sum
  3/    /x*y\\     /    3/    /x*y\\       2/    /x*y\\   /    /x*y\\\       2/    /x*y\\   /    /x*y\\
re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
   \    \ 2 //     \     \    \ 2 //        \    \ 2 //   \    \ 2 ///        \    \ 2 //   \    \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
=
  3/    /x*y\\     /    3/    /x*y\\       2/    /x*y\\   /    /x*y\\\       2/    /x*y\\   /    /x*y\\
re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
   \    \ 2 //     \     \    \ 2 //        \    \ 2 //   \    \ 2 ///        \    \ 2 //   \    \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
product
  3/    /x*y\\     /    3/    /x*y\\       2/    /x*y\\   /    /x*y\\\       2/    /x*y\\   /    /x*y\\
re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
   \    \ 2 //     \     \    \ 2 //        \    \ 2 //   \    \ 2 ///        \    \ 2 //   \    \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
=
  3/    /x*y\\       2/    /x*y\\   /    /x*y\\     /    2/    /x*y\\       2/    /x*y\\\   /    /x*y\\
re |asin|---|| - 3*im |asin|---||*re|asin|---|| + I*|- im |asin|---|| + 3*re |asin|---|||*im|asin|---||
   \    \ 2 //        \    \ 2 //   \    \ 2 //     \     \    \ 2 //        \    \ 2 ///   \    \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}\right) \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
re(asin(x*y/2))^3 - 3*im(asin(x*y/2))^2*re(asin(x*y/2)) + i*(-im(asin(x*y/2))^2 + 3*re(asin(x*y/2))^2)*im(asin(x*y/2))