3/ /x*y\\ / 3/ /x*y\\ 2/ /x*y\\ / /x*y\\\ 2/ /x*y\\ / /x*y\\
z1 = re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
\ \ 2 // \ \ \ 2 // \ \ 2 // \ \ 2 /// \ \ 2 // \ \ 2 //
$$z_{1} = i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
z1 = i*(3*re(asin(x*y/2))^2*im(asin(x*y/2)) - im(asin(x*y/2))^3) + re(asin(x*y/2))^3 - 3*re(asin(x*y/2))*im(asin(x*y/2))^2
Sum and product of roots
[src]
3/ /x*y\\ / 3/ /x*y\\ 2/ /x*y\\ / /x*y\\\ 2/ /x*y\\ / /x*y\\
re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
\ \ 2 // \ \ \ 2 // \ \ 2 // \ \ 2 /// \ \ 2 // \ \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
3/ /x*y\\ / 3/ /x*y\\ 2/ /x*y\\ / /x*y\\\ 2/ /x*y\\ / /x*y\\
re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
\ \ 2 // \ \ \ 2 // \ \ 2 // \ \ 2 /// \ \ 2 // \ \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
3/ /x*y\\ / 3/ /x*y\\ 2/ /x*y\\ / /x*y\\\ 2/ /x*y\\ / /x*y\\
re |asin|---|| + I*|- im |asin|---|| + 3*re |asin|---||*im|asin|---||| - 3*im |asin|---||*re|asin|---||
\ \ 2 // \ \ \ 2 // \ \ 2 // \ \ 2 /// \ \ 2 // \ \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
3/ /x*y\\ 2/ /x*y\\ / /x*y\\ / 2/ /x*y\\ 2/ /x*y\\\ / /x*y\\
re |asin|---|| - 3*im |asin|---||*re|asin|---|| + I*|- im |asin|---|| + 3*re |asin|---|||*im|asin|---||
\ \ 2 // \ \ 2 // \ \ 2 // \ \ \ 2 // \ \ 2 /// \ \ 2 //
$$i \left(3 \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2} - \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}\right) \operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{3} - 3 \operatorname{re}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)} \left(\operatorname{im}{\left(\operatorname{asin}{\left(\frac{x y}{2} \right)}\right)}\right)^{2}$$
re(asin(x*y/2))^3 - 3*im(asin(x*y/2))^2*re(asin(x*y/2)) + i*(-im(asin(x*y/2))^2 + 3*re(asin(x*y/2))^2)*im(asin(x*y/2))