Mister Exam

Other calculators

y-5=(-5/12)*(x-1) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
        -5*(x - 1)
y - 5 = ----------
            12    
$$y - 5 = - \frac{5 \left(x - 1\right)}{12}$$
Detail solution
Given the linear equation:
y-5 = (-5/12)*(x-1)

Expand brackets in the right part
y-5 = -5/12x-1

Move free summands (without x)
from left part to right part, we given:
$$y = \frac{65}{12} - \frac{5 x}{12}$$
Move the summands with the unknown x
from the right part to the left part:
$$\frac{5 x}{12} + y = \frac{65}{12}$$
Divide both parts of the equation by (y + 5*x/12)/x
x = 65/12 / ((y + 5*x/12)/x)

We get the answer: x = 13 - 12*y/5
The graph
Rapid solution [src]
          12*re(y)   12*I*im(y)
x1 = 13 - -------- - ----------
             5           5     
$$x_{1} = - \frac{12 \operatorname{re}{\left(y\right)}}{5} - \frac{12 i \operatorname{im}{\left(y\right)}}{5} + 13$$
x1 = -12*re(y)/5 - 12*i*im(y)/5 + 13
Sum and product of roots [src]
sum
     12*re(y)   12*I*im(y)
13 - -------- - ----------
        5           5     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{5} - \frac{12 i \operatorname{im}{\left(y\right)}}{5} + 13$$
=
     12*re(y)   12*I*im(y)
13 - -------- - ----------
        5           5     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{5} - \frac{12 i \operatorname{im}{\left(y\right)}}{5} + 13$$
product
     12*re(y)   12*I*im(y)
13 - -------- - ----------
        5           5     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{5} - \frac{12 i \operatorname{im}{\left(y\right)}}{5} + 13$$
=
     12*re(y)   12*I*im(y)
13 - -------- - ----------
        5           5     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{5} - \frac{12 i \operatorname{im}{\left(y\right)}}{5} + 13$$
13 - 12*re(y)/5 - 12*i*im(y)/5